next up previous
Next: A closer look Up: The Legendre and Laguerre Previous: The Hydrogen Calculation using

The Angular Component

Once again, it is reasonable to assume a certain dimensional independence which enables separation of variables in terms of the $ \theta$ and $ \phi$ components. Under this regime:
$\displaystyle Y(\theta,\phi)$ $\displaystyle =$ $\displaystyle \Theta(\theta)\Phi(\phi) \Longrightarrow$  
$\displaystyle \frac{1}{\Theta}\left(\sin(\theta)\frac{d}{d\theta}\left(\sin(\th...
...ta}\right) + \Delta \sin^2\theta\right)
+ \frac{1}{\Phi}\frac{d^2\Phi}{d\phi^2}$ $\displaystyle =$ $\displaystyle 0  \ni$  
$\displaystyle \frac{1}{\Theta}\left(\sin(\theta)\frac{d}{d\theta}\left(\sin(\theta)\frac{d\Theta}{d\theta}\right) + \Delta \sin^2\theta\right)$ $\displaystyle =$ $\displaystyle m^2 ,$  
$\displaystyle \frac{1}{\Phi}\frac{d^2\Phi}{d\phi^2}=-m^2 \Longrightarrow \Phi(\phi)$ $\displaystyle =$ $\displaystyle e^{im\phi},  m \in \mathbb{Z}$ (3.1)

The $ \Phi$ side of the equation was quickly solved. We can recast this equation in the following variations, where we let C represent $ x=\cos(\theta)$ and S $ \sqrt{1-x^2}=\sin(\theta)$ ; we introduce the notation $ \blacktriangledown$ which represents an introduction of a new idea into the stream of derivation, and $ \blacktriangleright$ is followed by the immediate consequence of this new idea; we then consider the $ m=0$ case.
$\displaystyle S\frac{d}{d\theta}\left(S\frac{d\Theta}{d\theta}\right) + (\Delta S^2\theta)\Theta$ $\displaystyle =$ 0  
$\displaystyle x=C(\theta) \rightarrow \frac{dx}{d\theta}$ $\displaystyle =$ $\displaystyle -S(\theta)\Longrightarrow S \frac{\partial}{\partial \theta}\left(
S\frac{d\Theta}{dx}\frac{dx}{d\theta}\right)$  
$\displaystyle =S\frac{d}{d\theta}\left(-S^2\frac{d\Theta}{dx}\right)$ $\displaystyle =$ $\displaystyle -2S^2C\frac{d\Theta}{dx} + \left(-S^3\frac{d}{dx}
\frac{d\Theta}{d\theta} = S^4\frac{d^2\Theta}{dx^2}\right) \ni$  
$\displaystyle \blacktriangledown \Theta = y \blacktriangleright
S^2y''-2Cy'+\Delta y$      
$\displaystyle = (1-x^2)y'' - 2xy' + \Delta y$ $\displaystyle =$ $\displaystyle \frac{d}{dx}\left((1-x^2)y'\right) + \Delta y =0$  

As we further press on this equation, we shall find it suggesting its own solution, even betraying the separation constant $ \Delta$ .

Subsections
next up previous
Next: A closer look Up: The Legendre and Laguerre Previous: The Hydrogen Calculation using
tim jones 2009-02-11