next up previous
Next: Case B Up: The Trace Previous: The partition

Case A

$\displaystyle H_i(t)H_i(t')\rho_{se}(t') = $

$\displaystyle \hbar^2\left(G(t)a^{\dagger}+G^{\dagger}(t)a\right)\left(G(t')a^{...
...i}{kT}\right)\right)\exp\left(\frac{-b_i^{\dagger}b_i\hbar \omega_i}{kT}\right)$

The first term we can extract is,

$\displaystyle \hbar^2\left(G(t)a^{\dagger}G^{\dagger}(t')a\right)\rho_s(t')\pro...
...i}{kT}\right)\right)\exp\left(\frac{-b_i^{\dagger}b_i\hbar \omega_i}{kT}\right)$

We recall that

$\displaystyle G(t)=\sum_j g_jb_j\exp(i(\omega-\omega_j)t)$

so we can rewrite the term as (with $ \zeta=\hbar^2a^{\dagger}a\rho_s(t')$ and $ \chi_i = \left[1-\exp\left(\frac{-\hbar \omega_i}{kT}\right)\right]$),

$\displaystyle \zeta\left[\sum_jg_jb_j\exp(i(\omega-\omega_j)t)\right] \left[\su...
...ight] \prod_i \chi_i\exp\left(\frac{-b_i^{\dagger}b_i\hbar \omega_i}{kT}\right)$

It is easily seen that when we take the trace, all terms will involve $ b_jb^{\dagger}_k$ and will vanish unless $ j=k$, so we can write the term as,

$\displaystyle \zeta\left[\sum_jg_j^2b_jb_j^{\dagger}\exp(i(\omega-\omega_j)(t-t...
...right]\prod_i \chi_i\exp\left(\frac{-b_i^{\dagger}b_i\hbar \omega_i}{kT}\right)$

But again, we can use the same argument to write the term as,

$\displaystyle \zeta \sum_j\chi_jg_j^2b_jb_j^{\dagger}\exp(i(\omega-\omega_j)(t-t'))\exp\left(\frac{-b_j^{\dagger}b_j\hbar \omega_j}{kT}\right)$

We can now easily take the trace, noting that $ Tr[B\rho] = <B>$, and with $ n=b^{\dagger}b$ with $ [b,b^{\dagger}]=1$.

$\displaystyle Tr\left\{\zeta \sum_j\chi_jg_j^2b_jb_j^{\dagger}\exp(i(\omega-\omega_j)(t-t'))\exp\left(\frac{-b_j^{\dagger}b_j\hbar \omega_j}{kT}\right)\right\}$

$\displaystyle =\zeta \sum_jg^2_j(1+\bar{n}_j)\exp(i(\omega-\omega_j)(t-t'))$

For the reader interested in the total details of the previous calculation, [1] is a good reference, where it is also demonstrated that, for example,

$\displaystyle \frac{\sum_0^{\infty}\langle n \vert b^{\dagger}be^{-\lambda b^{\...
...1-e^{-\lambda})\sum_0^{\infty}ne^{-\lambda n} = \frac{1}{e^{\lambda}-1}=\bar{n}$ (4.3)

In any case, we now have a general formula we can use, that is,
$\displaystyle \langle G(t)G(t')\rangle$ $\displaystyle =$ $\displaystyle \langle G^{\dagger}(t)G^{\dagger}(t')\rangle=0$ (4.4)
$\displaystyle \langle G(t)G^{\dagger}(t')\rangle$ $\displaystyle =$ $\displaystyle \sum_j(1+\bar{n}_j)\exp(i(\omega-\omega_j)(t-t'))$ (4.5)
$\displaystyle \langle G^{\dagger}(t)G(t')\rangle$ $\displaystyle =$ $\displaystyle \sum_j(\bar{n}_j)\exp(-i(\omega-\omega_j)(t-t'))$ (4.6)

The other non zero trace will be, with $ \eta=\hbar^2 a a^{\dagger}\rho_s(t')$ and $ \gamma_j=\exp(i(\omega-\omega_j)(t-t'))$

$\displaystyle Tr\left[\eta \left(G(t)^{\dagger}G(t')\right)\prod_i \chi_i\exp\l...
...\hbar \omega_i}{kT}\right)\right] = \eta \sum_jg_j^2\bar{n}_j\gamma_j^{\dagger}$


next up previous
Next: Case B Up: The Trace Previous: The partition
Timothy Jones 2006-10-11