**PHYS 105: Introduction to Computational Physics** 

*Spring 2016* Homework #6

(Due: May 31, 2016)

1. Consider a projectile moving in two dimensions under the combined effects of gravity and air resistance. Initially the projectile is launched from x = 0, y = 0 with speed  $v_0 = 100$  m/s at an angle of  $\theta_0 = 60^\circ$  to the horizontal. The components of its acceleration are

$$a_x = -\beta |v| v_x, a_y = -g - \beta |v| v_y,$$

where  $\beta = 0.001$ .

- (a) Compute the projectile's range and time of flight (take  $\delta t = 0.01$ , and don't forget to interpolate!). Plot the projectile's trajectory  $\gamma(x)$ .
- (b) At what angle to the horizontal  $\theta_1$  does the projectile hit the ground in either case in part (a)? What would  $\theta_1$  be in the absence of air resistance (i.e.  $\beta = 0$ )?
- (c) By what factor (to within 1 percent) must the launch speed for  $\beta = 0.001$  be increased to restore the range to the  $\beta = 0$  result?
- (d) By varying the value of  $\theta_0$ , determine the maximum range of the projectile for  $v_0 = 100$  m/s (again with  $\beta = 0.001$ ). To what value of  $\theta_0$  (to 1 decimal place) does this correspond?
- (e) For  $v_0 = 100$  m/s, plot  $\theta_1$  as a function of  $\theta_0$ .
- 2. Now suppose that the value of  $\beta$  in problem 1 varies with height y, according to the law

$$\beta(\mathbf{y}) = 0.001 e^{-\mathbf{y}/h},$$

where h = 500 m (*not* a very realistic description of Earth's atmosphere!). How does the maximum range of the projectile (as computed in problem 1d) change as a result? What if h = 5 km (a much better approximation to reality)?

3. A rocket is fired from Earth's surface with speed  $v_0 = 7.5$  km/s at an angle  $\theta = 45^\circ$  to the horizontal at the launch point, as illustrated in the diagram below. The gravitational acceleration of the spacecraft due to Earth (of mass *M*), lying at the origin of coordinates is

$$\mathbf{a}_{\mathbf{grav}} = -\frac{GM\mathbf{r}}{r^3},$$

where  $\mathbf{r} = (\mathbf{x}, \mathbf{y})$  is the spacecraft's position vector,  $r = |\mathbf{r}| = \sqrt{x^2 + y^2}$ , and G is the gravitational constant.

Thus, in the two-dimensional coordinate system shown in the diagram, the rocket starts from location (0,R), where *R* is Earth's radius, with velocity  $(v_0 \cos \theta, v_0 \sin \theta)$ . Take  $GM = gR^2$ , where  $g = 9.80 \text{ m/s}^2$  and R = 6400 km. Neglect both air resistance and the effect of Earth's rotation.



- (a) Write a program to determine the trajectory of the spacecraft. Stop the calculation when the spacecraft hits Earth's surface (i.e. when *r* becomes less than *R*). Choose a time step  $\delta t$  of 1 second. Plot the spacecraft's trajectory  $\gamma(x)$ .
- (b) For  $v_0 = 7.5$  km/s and  $\theta = 45^\circ$ , what is the maximum height reached by the rocket (relative to Earth's surface), and what is its range (in kilometers, measured along Earth's surface)?
- (c) For *fixed*  $v_0 = 7.5$  km/s, find, to within 1 degree, the *minimum* value of  $\theta$  needed to hit a target on the surface at location (*R*,0), i.e. where the x-axis intersects the surface. What is the maximum distance above Earth's surface reached by the rocket in this case, and what is the rocket's time of flight?