
PHYS 105: Introduction to Computational Physics

Spring 2016

Homework #5
(Due: May 19, 2016)

1. Consider the 1-dimensional motion of a particle moving under a harmonic force:

a(x) = −k x ,

with k = 1 and x = 0, v = 1 at t = 0. Now friction also acts on the particle, producing an
acceleration proportional to, and always opposite, the velocity:

af = −αv .

For small values of α, the mathematical solution to the equations of motion may be shown
to be of the form

x = Ae−bt sinω′t .

(a) For α = 0.1, and taking time steps δt = 0.001, determine the period T by finding the first
time (after t = 0) at which the particle crosses x = 0 with v > 0 (using linear interpolation,
as usual, to refine the answer). Hence determine the value of ω′.

(b) By considering the decrease in amplitude from one maximum (or minimum) to the next,
determine the ratio r by which the amplitude decreases from one peak to the next. Hence
calculate the value of b for this α.

(c) As α increases, the oscillations are more strongly damped, and eventually cease. Deter-
mine, to two significant figures, the critical value of α beyond which there are no oscillations
(i.e. the particle never crosses x = 0 again).

As usual, turn in your program, any non-graphical output produced when it runs, and all
requested plots and additional calculations.

2. [In-class Exercise 7.2] Consider the motion of the nonlinear, damped, driven pendulum, de-
scribed by the equation

a ≡ d2x

dt2
= − k sinx− αv + g cos(ωDt) .

Solve the above equations numerically and plot the phase-space (x–v) trajectories for x0 =
v0 = 1, with k = 1, ωD = 2/3, dt− 0.001 and the following choices of α and g:

α = 0.0, g = 0
α = 0.5, g = 0
α = 0.5, g = 1
α = 0.5, g = 1.07
α = 0.5, g = 1.15
α = 0.5, g = 1.5



Start each calculation at time t = 0, begin plotting trajectories at t = 250 to allow transients
to die away, and continue each calculation to t = 1500. In all cases, “wrap” the variable x so
that it always lies in the range [−π, π], as follows:

while (x > M_PI) x -= 2*M_PI;

while (x < -M_PI) x += 2*M_PI;

or

while x > math.pi) x -= 2*math.pi

while x < -math.pi) x += 2*math.pi

Draw each trajectory as a separate graph, and choose axes with −3.5 ≤ x ≤ 3.5, −3 ≤ y ≤ 3.

3. Modify the program in problem 2 to produce Poincaré sections of the motion, that is, only
print out the state of the system when the driving phase φ = ωDt is an integral multiple of
2π. Operationally, this is accomplished by checking at the end of each time step to see if
the old and new values of φ straddle a multiple of 2π, and then using linear interpolation to
determine the values of x and v at the proper phase.

(a) Repeat the calculations in the previous question, plotting the results with the same axes
as before. In the chaotic cases, continue the motion until t = 10000 in order to obtain a
reasonable number of output points. (Note: this may take some time if you are programming
in Python.)

In the case g = 1.15, repeat the calculation for Poincaré sections at phases 2nπ + π/4 and
2nπ + π/2 (for integral n).

(b) For the chaotic attractor with g = 1.15, choose an interesting region of the Poincaré
section and “zoom in” on it to show its (fractal) structure in more detail . You will need to
increase the length of your calculations as you proceed in order to maintain the number of
plotted points. Turn in the plots obtained by zooming in on your chosen region by factors of
10 and 100.

Note: usse the wwork done in class as much as possible, or at least modify the software the
least possible.


