SIMULTANEOUS (SUCCESSIVE) OVER RELAXATION

TIMOTHY JONES

ABSTRACT. Numerical methods may be employed to model the potentials cre-
ated by complex configurations. In this section we consider one such method,
an efficient variation of the Jacobi method called simultaneous over relaxation.
The derivation follows the primary strains of the proper mathematical deriva-
tion but is in no way rigorous.

1. HARMONIC EQUATIONS

In an electrical vacuum, the electrical potential obeys Laplace’s equation:

oV BV

A real-valued function is considered harmonic in a domain D if all of its second-
order partial derivatives are continuous in D, and if at each point in D the function
satisfies Laplace’s equation [1]. Such functions come from the real and imaginary
parts of complex analytical functions.

Consider the function:

(1.2) f(z) = u(z,y) + iv(z,y)

We assume the derivative of this function exists at z, = x, +iy,. We let Az =
Az + iAy — 0 along the x and y axis independently, which is to say,

df(z) _ u(zo + Az, yo) + iv(zo + Az,y0) u(0,Y0) + 1v(Z0,Yo)
dz ~— Az=Az—0 Az Ax

Likewise for Az = iAy, such that we have the set of equations,

df (z0) Ou . Ov Ou Ov
1-3 _— - _— = —] — JE—
(13) z 8x+16$ Z6y+8y

These are better known as the Cauchy-Riemann equations,

Ou Ov dv Ou

1.4 Z - 2 __Z
(14) 0x Oy’ Oz Oy

The demand that

0 Ou 0 0Ou
dyox Oz dy
gives
v 0%
0y: ~ Ox?

Which is simply Laplace’s equation, establishing our claim that potential functions
are components of complex functions. With this fact comes the many useful tools
of complex analysis. Specifically, Cauchy’s Integral Formula reads,

(15) feo) = o= § L as

for some contour. If we parameterize that contour with z = 2y + Re®t, 0 <t < 27,
and

dz
dz = —dt
1)z = £(2) 2
This gives
1 [°7 f(zo+Re™) ., 4
f(Zo) = 2_7'['7, o TZRC dt
This is better known as the Mean-Value property,
1 27 .
(1.6) fzo) = o= [flzo+ Ret)dt
27 Jq

A harmonic function evaluated at some point is equal to the average value of
that function around some circle (or sphere) centered at that point. The Jacobi
method follows directly from this.

2. JAacoBI, GAUSS-SEIDEL METHOD

The Jacobi method proposes to impose a grid over our physical environment.
This grid is the standard square grid type, whereby the mean value method can
only sample four points:

This gives

(2.1) Vii,j)=7(V@i+1,)+V(i-15)+V(i,j+1)+V(Ej—-1))

AN

If we now imagine taking this average over a i by j grid under the boundary
constraints in an iterative process, we might see that after many iterations the
boundary conditions will have ’flowed’ by averaging throughout the system, a pro-
cess called ’relaxing’. Once the iteration process gives negligible change in our grid,
we have found a numerical solution to our potential problem. Under the right
conditions, convergence is guaranteed (more on this later).

Whereas the Jacobi method sums the potential as the average of its neighbors in
their pre-determined state (i.e. from the previous set of iterations), the Gauss-Seidel
(GS) method proposes the use of the latest numbers as they become available.

In Simultaneous Over Relaxation (SOR) we push these methods even further, for
if we define AV = Viey (4,5) — Voua(i, j), then SOR proposes to force that change
by some factor o > 1:

VNew(iaj) = VOld(":aj) +aAV

. Finding the right a value without wrecking the process is the point of this report.

3. A MORE FUNDAMENTAL ANALYSIS OF THE SIMULTANEOUS OVER
RELAXATION METHOD

Whereas our principal mathematical justification for an iterative averaging comes
from the mean value property, the behavior of the iteration in terms of convergence
must ultimately come from the properties of the numerical methods. In this section
we will look closer at the mathematical details of our iterative processes with the
ultimate goal of finding the optimal SOR coefficient.

2

We can generalize the Jacobi method by differentiating for boundary conditions,

1
31 V@5 = ;VE+L)+V0E-1L7)+V(i,j+1)+V(@j-1)
| - _ _ -
B2) ey = 7 (@i e - 2 — 2l
p [ttt i+l j+1 ,
(3.3) = 3 Z Z 2y 8ap + Z Z 2l 60
a=1i a=j a=1i a=j

Here 4 selects those values which are non-boundary values, and ¢’ indicates those
which are boundary conditions.
The above equation can be generalized by writing, for the Jacobi case,

(3.4) Dzt = Ba™ +b
For the GS case, we use the new values as they become available whereby,
D(z[k +1]) = Le[k + 1]+ Uz[k] + b

The reader can convince themselves that L is a lower triangular matrix and U an
upper triangular, where the Jacobi form could be simplified as, for example,

DUUTU X
L DUU X
(3.5) L L DU X,
L L L D X,

That L is a triangular matrix and D is uniformly nonzero along the diagonal means
that the determinant of D-L will not be zero, whereby D-L is invertible. Thus we
have,

o[k + 1] (D—L)"'Uz[k] + (D - L)™'b, or
(3.6) z[k+1] = D' (Laz[k+ 1]+ Uz[k] +b)

SOR has us calculate the difference between the new value of the potential we
are calculating as recommended by GS, and the old value pre-calculation. Calling
this difference Q, SOR then adds wQ to the old coefficients, where w is the SOR
coefficient to be determined for optimal progress (w = 1 is simply GS, w > 1 is
SOR). Thus in matrix form, the SOR method can be written

(3.7) o[k + 1] zk] + w (D' (Lz[k + 1] + Uz[k] + b) — z[k])
(D —wL)z[k + 1] (1 —w)Dz[k] + wUz[k] + wb
zk+1 = (D—-wL)™' (1 =w)D +wU)z[k]+ (D —wL) "wb

And obvious substitution is
H=(D—-wL) ™ (1 —w)D +wU),
from which we get
(3.8) zlk + 1] = Ha[k] + (D — wL) " wb

The reader is encouraged to view reference [2],[3] for a more detailed exposition,
as we take more than a few liberties of omitting detail here.
3

3.1. Conditions for the the convergence of SOR. The conditions for the con-
vergence of the simultaneous over-relaxation method are found via Kahan’s Theo-
rem (Equaton 3.10). Note that

det(H) = det((D —wL) ")det((1 —w)D + wlU)
= det(D Ydet((1 —w)D + wl))
(3.9 = det((1 —w)I +wD 'U) = det((1 —w)I) = (1 —w)"

Since det(H) = []; Ai, (A\; are eigenvalues of H), and the spectral radius is defined
by p(H) = maz|Ail,

(3.10) H)‘i =det(H) = (1 —w)" <maz|\|" = p(H) > |w—1]

Now the Fundamental Theorem of Linear Iterative Methods (see final section) tells
us we have convergence if p(H) < 1, and since p(H) > |w — 1|,

1>w-1=>0<w<2

Obviously w = 1 is Jacobi-GS, and w < 1 is foolish, so we consider 1 < w < 2. It
is now our task to find which value in this region is most efficient.

3.2. A relaxed derivation of the SOR coefficient. We begin our discussion
by considering a simpler iteration system,

ot = Ga¥

Let C be the set of all sequences {z*} created by this iteration such that the
sequence converges to {z*}, i.e. we say

lim {z*} = {z*}
k—o00
Define
(3.11) a = lim suple® —*|YF 50<p<1
k—o0

We shall take liberties and call this a the asymptotic convergence factor of the
general iteration (see the references for a more sophisticated definition). For a
given iteration, the sequence will converge at least as rapidly as the sequence o
goes to zero.

From our previous definitions,

zlk+ 1) —z* = H(z[k] — ") = H(H(z[k — 1] — z¥)
(3.12) |z* —z*| < |H*||2° — 2*| < |H|[F|2® — 2*| 3 kli}rrolo supl|z® — z*|'/* < p(H)
Here we have used that |H| < p(H). We have loosly demonstrated that

a < p(H)

The spectral radius establishes the upper bound on the rate of convergence. We
thus seek to maximize the spectral radius as a to minimize the convergence time.
To begin to do so, we wish to roughly demonstrate a rather elegant lemma that
says that eigenvalues of the Jacobi iteration matrix occur in pairs (except if there
is a zero eigenvalue), which we shall denote +p;

Suppose we take some random value A and want to find det(IX — C), where C
has eigenvalues a;. C can be diagonalized with its eigenvalues via C = TDT ™1,
whereby

det(A\ — C) = det(TAIT ™ — T(Diag)T~") = det(T)det(\ — Diag)det(T ")
4

Thus, supposing the existance of p zero valued eigenvalues (p may be zero itself):
T
det(\I — C) = det(A — Diag) = X [[(A — as)
i=1

For a more thorough discussion of what is to follow, the reader is referred to the
references, especially on 2-Cyclic matrices (such as the one we are concerned with).

Now det(AI — C') may be written as
AL -Ch
—Cy Al

o=l) (S

We can thus write that

det(\I — C) = ‘

And we note that

_ | =h O AL =G| L0
det(\ - C) = (1) 0 I ‘_Cz Al ‘0 -I

_ n —)\Il —Cl

= (-1 —Cy, =AD

T
(3.14) det(M[-C) = det(M [+C) = NP H()\+ai) =>Va; >03a;, <0 2a;=—aq;
i=1

Thus (those with a strongly developed mathematical sense will be unhappy with
my use of thus here) we have Romanovsky’s Lemma:

r/2

det(\I = C) = X [\ — 1)
i=1

We can use this lemma to demonstrate another important detail about form of
matrices we are considering (formally called regular splittings).

We wish to show that the eigenvalues of aD~!L + DU are equal to those of
a2 2D=Y(L + U). Let

ol/?
O g
We need to demonstrate that
det(\[— (aD'L+ SD'U)) = det(\ —a'/?BY?(§D7 L+ 6 'D1U))
(3.15) = det(\] — o?BY*(D 'L + D 'U)

That is to say, that the matrix n = L + U is consistently ordered. Define

_ 0 s~'DrCy

_ Il 0 -1 _ Il 0
S‘S_(O (512)755 _(0 51.[2>

n(8) = Sem(1)S;*
Whereby in the spirit of previous arguments we have thus shown Equation 3.15 to
be true. We are now ready to attack the problem head on. Recall that we defined
(3.16) H=(D-wL) " ((1=-w)D +wl)
5

And

It is clear that

from this discussion we can reformulate this as follows:
det(\[— H) = det((D —wL)™')det(D — wL)det(\I — (D —wL)™" (1 — w)D + wU))
= det((D —wL) Ydet((D — wL)A\ — (1 — w)D + wU)
= det(D)det((D — wL)A — (1 — w)D + wU)
det((I —wD L) — (1 — w)I —wD™'U)
(
(

Il

det (A+w —1)I - AwD 'L - wD™'U)

= det((A+w—1)I = \2wD™C) with a = w), 8 =w from 3.15
r/2

A+w—1)" H (()\ +w—17T= oy) Romanovsky’s Lemma

i=1

(3.17)

The eigenvalues of H may be found from
A +w—1)% = dw?p?
From this we get

(V2)? F Vawp; + (w—1) =0 —>\/X:w”"i\/7"2l§—4(w—1)

Since p comes in + pairs, we can minimize our convergence time by choosing w
such that

wp? —4(w—-1)=0
We are bound by the maximal u, the spectral radius, so that
w’p(D7'C)? — 4w +4=0
Defining D~1C = J and solving for w, we find

(3.18) _2-2/1-p(J)? _ 20-1+p())") _ 2
| p(7)? PP+ I=p() 1+/15 90

To find the spectral radius of J, we need find the eigenvectors/values of J. The
Jacobi equation is given, again, by

Azij — (Tivr,j + Tic1j + Tigr + Tigo1) = by
J is formed by stripping off the diagonal and multiplying by I/4 Thus the eigenvalue
equation gives

1
(3.19) JC=vC = 7 (i1 + aim1j + Qijir +aijo1) = vai

Introduce the ansatz that
ki lmj
af,’; = sin(%) sin(%])

where N is the dimensions of the grid (matrix, i.e. the number of rows). Plugging
this into the equation above yields the equation

1 k ml
Vil = g <cos(ﬁ) + cos(N))

Obviously the maximum possible value will be cos(w/N), this thus defining the
spectral radius of concern, where by,

2 2

2
14+ /1 —cos?(m/N) 1 +sin(7/N) T4 &
6

(3.20)

4. A RACE: JACOBI VERSES GS VERSES SOR

To demonstrate the difference between the normal naive Jacobi and the SOR,
we test the methods with a basic voltage configuration. Consider a grounded box
with a rod half the length centered in the box. When we performed the relaxation,
it took Jacobi’s method 1623 iterations, GS 1074, and SOR only 199 iterations; this
with a tolerance (maximum difference between previous values and new values) of
0.0001. Obviously one can see the advantage of the SOR method. Our results are
presented below, and our program used ends this report.

Jacobi, N=100, n=1623, Tolerate=0.0001 Jacobi, N=100, n=1623, Tolerate=0.0001

T - . 0
0 10 20 30 40 50 60 70 80 90 100

GS, N=100, n=1074, Tolerate=0.0001 SOR, N=100, n=199, Tolerate=0.0001

M M b ., 0
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

The Jacobi/GS/S0OR Race

0.008 T T T T T T
‘jac.rate’ ——
‘sor.rate’ -—---—-
By ‘gs.rate’
0.007 | 8
0.006 | E
ﬁ =
8 0008 [1. |
8 fs
c 1
o L
£ 0004 | 4
[s} -
0008 | 4
EXox xox i
o ‘4——»—14__'__5__‘,&_){__)5_4_! X X w ;< Tl
B S S ¥
0.002 |- R IV
0001 L L ' ! ! !
a0 95 100 105 110 115 120 125

Steps

FIGURE 4.1. Same results, different rates. Jacobi requires 1623
iterations, GS 1074, and SOR only 199 for a simple potential prob-
lem and a 100 by 100 grid.

5. AN APPLICATION: THE RF PAuL ION TRAP

The rf Paul ion trap, a configuration of hyperbolic electrodes, and similar ap-
plications, have been extensively studied (see the report on the rf Paul ion trap
for more details). For a much more professional relaxation calculation for such
traps made using hyperbolic electrodes, the reader is encouraged to study Gaerald
Gabrielse’s paper [5].

We set our algorithm to create a pseudo cross section of an rf-Paul trap. The
upper electrodes are held at -1 Volt, and the middle ring is held at 1 Volt. We
proceed with an SOR iteration with a tolerance of 0.0001 (defining the maximal
difference between iterations of any point on the grid) of a 1000 by 1000 grid. Our
results are presented below. As expected, an unstable equilibrium is found at the
center. It took 1318 iterations, and though we lacked the patience to give the Jacobi
method a chance to run this scenario, we suspect it would have taken much much
longer.

Hyperbolic Electrodes via SOR, N=1000, n=1318, Tolerate=0.0001

1000
900
800
700
600
500
400
300
200

- 100
- : g - 0
0 100200 300400500 600700800 9001000

FI1GURE 5.1. The pseudo rf-Paul trap, as modeled using SOR

6. THE PROGRAMS USED

For the SOR method (which can be modified to GS and Jacobi):

#include<stdio.h>
#include<math.h>

int main(){

//Set up the array
int i,j;

int count=1;
float 0k=0.0001;
float diff=0;

float max=0.002;
double v[100][100];
double u[100] [100];
int flag=0;
for(i=0; i<100; i++){
for(j=0; j<100; j++){v[il1[3j1=0.0;uli][j1=0.0;1}}

float w=1.93908;
float alpha=0;

//The SOR Method: Avoid boundaries

//A grounded box surrounds a central

//plate held at potential located at i=49
//from j=25 to 75

for(j=25;j<=75;j++){v[49] [j1=1.0;ul49][j1=1.0;}

//A
while (max>ok){
printf ("%f\n",max) ;
//(B-C)
max=ok;
count+=1;
for(i=1; i<99; i++){ //B
for(j=1; j<99; j++){ //C
if (1==49)if (j>=25)if (j<=75){f1lag=100;} \\check for boundry
1f(i==49)1f(j<25){flag=0;}
if (1==49)if (j>75){flag=0;}
if (flag<1) {alpha=0.256*(v[i+1] [j1+uli-1] [j1+v[i] [j+1]+uli]l[j-11);3}
if (flag<1){ulil [j1=v[i] [jl+wx(alpha-v[il[j]);}
diff=fabs(v[i]l [j1-ulil[j1);
if (diff>max) {max=diff;}

¥ //7B "C
//™(B-C)

for(i=1; i<99; i++){for(j=1; j<99; j++){v[il[jl=ulilljl;}}
Y/ /A

//Print to file

FILE *fp;
fp=fopen("so.txt","w");

for(i=0; i<100; i++){for(j=0; j<100; j++){
fprintf (fp,"%i %i %f \n", i,j,v[i]1[j]);}fprintf(fp,"\n");}

printf ("SOR took %i iteratioms.\n",count);

}

The above code plots a simple bar at potential V. We can modify it for our
hyperbolic electordes as,

#include<stdio.h>
#include<math.h>

int main(){

//Set up the array

int i,j;

int count=1;

float o0k=0.0001;

float diff=0;

float max=0.002;

double v[1000][1000];

double u[1000] [1000];

int flag=0;

for(i=0; i<1000; i++){
for(j=0; j<1000; j++){v[il[j]1=0.0;ulil[j]1=0.0;1}}

float w=1.93908;
float alpha=0;

//Set hyperbolic conditions:

// Upper
for(j=250;j<=750;j++){
i=10*(int)floor (50+sqrt (100+2.4*(j/10-50)*(j/10-50)));
v[i]l[j1=1.0; v[i+1]1[j1=1.0; v[i-11[j]1=1.0; v[i][j+1]1=1.0;
\ v[il[j-11=1.0;
ulil[j1=1.0; uli+11[j1=1.0; wli-11[j1=1.0; u[il[j+1]1=1.0;
\ ulil[j-11=1.0;}

//Lower
for(j=250; j<=750; j++){
i=10* (int)floor (50-sqrt (100+2.4%(j/10-50)*(j/10-50)));
v[il[j1=1.0; v[i+11[j1=1.0; v[i-11[j1=1.0; v[il[j+1]1=1.0;
\ v[il[j-1]=1.0;
ul[i]1[j1=1.0; uli+11[j1=1.0; uli-11[j]1=1.0; ul[i][j+1]1=1.0;
\ ulil[j-11=1.0;}

// Left
for(i=250;i<=750;i++){
j=10% (int)floor (50+sqrt (100+2.4%(i/10-50)*(i/10-50)));
v[il[j]=-1.0; v[i+1]1[j1=-1.0; v[i-11[j]=-1.0; v[i][j+1]1=-1.0;
\ v[il[j-1]=-1.0;
ulil[j]1=-1.0; uli+1]1[j1=-1.0; uli-11[j]=-1.0; uli][j+1]1=-1.0;
\ ulil[j-11=-1.0;}

//Right
for(i=2560;i<=750;i++){
j=10*(int)floor (50-sqrt (100+2.4*(i/10-50)*(i/10-50))) ;
10

v[i][j1=-1.0; v[i+11[j1=-1.0; v[i-1]1[j]1=-1.0; v[i]1[j+1]=-1.0;

\ v[i]l[j-1]1=-1.0;
ulil [j1=-1.0; uli+1]1[j1=-1.0; uli-1]1[j1=-1.0; ulil[j+1]=-1.0;

\ ulil[j-11=-1.0;}

//A
while (max>ok){
printf ("%f\n" ,max);
//(B-C)
max=ok;
count+=1;
for(i=1; i<999; i++){ //B
for(j=1; j<999; j++){ //C
// if(v[il[j1>1){v[il[j]=1.0;} //Strays
// if(vlil[j1<-D{v[il[j1=-1.0;}
//if(v[i][j1<=-1.0){f1lag=100;}
if(v[i] [j1>=1){f1lag=100;}
if (v[i]1 [j1<=-1){f1ag=100;}
if(v[i]1[j1<1 && v[i]1[j]1>-1){flag=0;}
//Problem: what if more
if (flag<1){alpha=0.256*(v[i+1] [j1+uli-11[j1+v[il [j+1]1+uli][j-11);3
if (flag<1){
ulil [j1=v[i] [j1+w*(alpha-v[il[j1);
if (ulil[j1>1){ulil [j1=1;2
if (il [j1<-D{ulil[j1=-1;3}}
diff=fabs(v[il [j1-ulil[j1);
if (diff>max) {max=diff;}

}} //°B "°C
//~(B-C)

for(i=1; i<999; i++){for(j=1; j<999; j++){v[il[jI=ulil[j1;}}
Y/ /™A

//Print to file
FILE *fp;
fp=fopen("so2.txt","w");

int num=0; int numy=0;

for(i=0; i<1000; i++){for(j=0; j<1000; j++){

fprintf (fp,"%i %i %f \n", i,j,v[i]l[j1);} fprintf(fp,"\n");
numy++;

}

printf ("SOR took %i iteratioms.\n",count);

We also used the following gnuplot script, where our previous program’s output
put a blank line following each j cycle to conform with gnuplot’s contour method:

set data style lines
11

set terminal postscript
#set nokey

set cntrparam levels 20
set output ’hyperl.ps’
set title "Hyperbolic Electrodes via SOR, n=1000, Tolerate=0.0001"
splot ’so.txt’

set contour

set nosurface

set view 0,0

set output ’hyper2.ps’
splot ’so.txt’

REFERENCES

[1] E.B Saff, A.D. Snider, Fundamentals of Complez Analysis for Mathematics, Science, and

Engineering, (Prentice Hall, Upper Saddle River, New Jersey)

James M. Ortega, Numerical Analysis: A Second Course, (Academic Press, 1972)

[3] David M. Young, Iterative Solution of Large Linear Systems, (Academic Press, New York
and London 1971)

[4] Richard S. Varga, Matriz Iterative Analysis, (Prentice Hall, 1962)

[5] Gerald Gabrielse, Relazation calculation of the electrostatic properties of compensated Pen-
ning traps with hyperbolic electrodes, (Physical Review A, 27, 2277)

[6] Press et al., Numerical Recipes in C, 2nd Ed., (Cambridge University Press, 1992)

x5

12

