
PHYS 501: Mathematical Physics I

Fall 2022

Solutions to Homework #6

1. (a) Fourier transforming the equation gives

−k2φ̃(k) = 4πGρ̃(k),

so

φ̃ = −4πGρ̃

k2

and the solution is

φ(x) = −4πG(2π)−3/2
∫

d3keik·x
ρ̃(k)

k2
.

(b) If ρ(x) = mδ(x), ρ̃ = (2π)−3/2m, so

φ = −4πGm

(2π)3

∫
d3k

eik·x

k2

= −4πGm

(2π)3

∫
k2dk sin θkdθkdφk

eikr cos θk

k2
,

where we have taken the “z axis” in k space to run parallel to x, as usual. Doing the φk
integral, setting µ = cos θk, and simplifying, we find

φ = −Gm
π

∫ ∞
0

dk

∫ 1

−1
eikrµdµ

= −2Gm

π

∫ ∞
0

dk
sin kr

kr

= −Gm
π

∫ ∞
−∞

dk
sin kr

kr

= −Gm
πr

∫ ∞
−∞

dz
sin z

z

= −Gm
r
,

since the final integral has been shown in class to be π.

2. The Green’s function G(x, x′) for the inhomogeneous ODE y′′ − k2y = f(x) is determined
by solving the differential equation with f(x) = δ(x − x′) in 0 ≤ (x, x′) ≤ L, and matching
solutions at x = x′ so that G is continuous and [G′]+− = 1. The boundary conditions are
y(0) = y(L) = 0. In 0 ≤ x < x′, the solution satisfying the boundary condition at x = 0 is

y(x) = C sinh kx .

The corresponding solution in x′ < x ≤ L is

y(x) = C ′ sinh k(x− L) .



The continuity and jump conditions at x = x′ are

C sinh kx′ = C ′ sinh k(x′ − L)

Ck cosh kx′ = C ′k cosh k(x′ − L)− 1 ,

so

C =
sinh k(x′ − L)

k sinh kL

C ′ =
sinh kx′

k sinh kL
,

where we have used the identity

sinh a cosh b− cosh a sinh b = sinh(a− b) .

Thus the Green’s function is

G(x, x′) =
sinh kx sinh k(x′ − L)

k sinh kL
, x < x′

=
sinh k(x− L) sinh kx′

k sinh kL
, x > x′ .

3. Assume that the solution is a function of x − x′ and take x′ = 0 for convenience. Then the
Green’s function satisfies

∇2G+ k2G = δ(x).

For x 6= 0, we have ∇2G+ k2G = 0 and G is a sum of terms of the form

[aljl(kr) + blnl(kr)]Y
m
l (θ, φ).

Since j0(x) = sinx/x and n0(x) = − cosx/x, we obtain the solution representing an outgoing
spherical wave at infinity (G ∼ eikr/r) by adopting spherical symmetry (l = m = 0) and

choosing b0 = ia0 (so G = −ib0h(1)0 (kr), where h
(1)
0 = j0 + in0 is a Hankel function). Near

r = 0,

G ∼ b0 n0(kr) ∼ − b0
kr
.

Integrating the differential equation over an infinitesimal sphere centered on the origin, as-
suming G is continuous, and applying the divergence theorem to the ∇2G term as discussed
in class, we find, near r = 0,

∂G

∂r
∼ 1

4πr2

⇒ G ∼ − 1

4πr
.

The two expressions for G(r → 0) are consistent if

b0 =
k

4π
.

so

G = − eikr

4πr
= − ikh

(1)
0 (kr)

4π
.



4. The Green’s function is

G(x,x′) = − 1

4π|x− x′|
+

β

4π|x− x′1|
,

where x′1 = αx′ is the image point.

(a) We apply the boundary condition G(x,x′) = 0 when r = |x| = a at the two points
xA = ax′/r′ and xB = −ax′/r′, where the diameter through x′ intersects the surface of the
sphere. When x = xA, we have |x− x′| = a− r′, |x− x′1| = αr′ − a, so setting G = 0 implies

−1

a− r′
+

β

αr′ − a
= 0,

or
β(a− r′) = αr′ − a.

Similarly, when x = xB, we have

β(a+ r′) = αr′ + a.

The solutions to these two equations are easily seen to be

β =
a

r′
, α =

a2

(r′)2
= β2 .

We assume without proof that G is in fact zero whenever r = a. Note that both α and β are
1 when r′ = a, so G(x,x′) = 0 then also.

(b) The solution to ∇2u = 0 with u(a, θ, φ) = f(θ, φ) is then

u(r, θ, φ) =

∫
a2dΩ′ f(θ′, φ′)

∂G(x,x′)

∂r′

∣∣∣∣
r′=a

,

where dΩ′ = sin θ′dθ′dφ′. Writing ρ = |x− x′|, ρ1 = |x− x′1|, and noting that

ρ2 = (r′)2 + r2 − 2r′r cos γ,

where cos γ =
x′ · x
r′r

= cos θ′ cos θ + sin θ′ sin θ cos(φ′ − φ),

it follows that
∂ρ

∂r′
=
r′ − r cos γ

ρ

Similarly,

ρ21 = (αr′)2 + r2 − 2αr′r cos γ,

= a4/(r′)2 + r2 − 2a2r cos γ/r′,

so 2ρ1
∂ρ1
∂r′

= −2a4/(r′)3 + 2a2r cos γ/(r′)2

⇒ ∂ρ1
∂r′

= − 1

ρ1

a3

(r′)2

[ a
r′
− r

a
cos γ

]



Hence

∂

∂r′

(
1

ρ

)
r′=a

= −a− r cos γ

ρ3
,

∂

∂r′

(
1

ρ1

)
r′=a

=
a− r cos γ

ρ31
.

Substituting in, we have

∂G

∂r′

∣∣∣∣
r′=a

= − 1

4π

∂

∂r′

(
1

ρ

)
+

β

4π

∂

∂r′

(
1

ρ1

)
=

1

4π

(
a− r cos γ

ρ3

)
+

β

4π

(
a− r cos γ

ρ31

)
=

1

2πρ3
(a− r cos γ) ,

where have used the facts that β = 1, ρ1 = ρ when r′ = a. Hence

u(r, θ, φ) =
1

2π

∫
dΩ′ f(θ′, φ′)

(
a

ρ

)3 (
1− r

a
cos γ

)
.

(c) The series solution to the problem is

u(r, θ, φ) =
∞∑
l=0

l∑
m=−l

almr
lY m
l (θ, φ),

where

alma
l =

∫
dΩ′ f(θ′, φ′)Y m∗

l (θ′, φ′),

so

u(r, θ, φ) =
∑
l,m

(r
a

)l ∫
dΩ′ f(θ′, φ′)Y m∗

l (θ′, φ′)Y m
l (θ, φ).

We can connect this to the Green’s function solution as follows. Using the addition theorem
for r < a, r1 > a, r′ ≈ a, we can expand 1/ρ and 1/ρ1 as

1

ρ
=

∑
l,m

4π

2l + 1
Y m∗
l (θ′, φ′)Y m

l (θ, φ)
rl

(r′)l+1
,

1

ρ
=

∑
l,m

4π

2l + 1
Y m∗
l (θ′, φ′)Y m

l (θ, φ)
rl

(r1)l+1

(with the same θ′ and φ′). The Green’s function thus is

G = −
∑
l,m

1

2l + 1
Y m∗
l (θ′, φ′)Y m

l (θ, φ)

[
rl

(r′)l+1
− β rl

rl+1
1

]

= −
∑
l,m

1

2l + 1
Y m∗
l (θ′, φ′)Y m

l (θ, φ)
rl

(r′)l+1

[
1− βα−(l+1)

]

= −
∑
l,m

1

2l + 1
Y m∗
l (θ′, φ′)Y m

l (θ, φ)
rl

(r′)l+1

[
1−

(
r′

a

)2l+1
]

= −
∑
l,m

1

2l + 1
Y m∗
l (θ′, φ′)Y m

l (θ, φ) rl
[
(r′)−l−1 − a−2l−1(r′)l

]
.



Hence

∂G

∂r′

∣∣∣∣
r′=a

= −
∑
l,m

1

2l + 1
Y m∗
l (θ′, φ′)Y m

l (θ, φ) rl
[
−(l + 1)a−l−2 − a−2l−1lal

]
=

1

a2

∑
l,m

(r
a

)l
Y m∗
l (θ′, φ′)Y m

l (θ, φ),

so u(r, θ, φ) =

∫
a2dΩ′ f(θ′, φ′)

∂G

∂r′

∣∣∣∣
r′=a

=
∑
l,m

(r
a

)l ∫
dΩ′ f(θ′, φ′)Y m∗

l (θ′, φ′)Y m
l (θ, φ),

in agreement with the series solution.


