PHYS 501: Mathematical Physics I
Fall 2022

Solutions to Homework #6

1. (a) Fourier transforming the equation gives
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(b) If p(x) = md(x), p = (2m)~%/%m, so
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where we have taken the “z axis” in k space to run parallel to x, as usual. Doing the ¢
integral, setting p = cos 0y, and simplifying, we find
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since the final integral has been shown in class to be 7.

2. The Green’s function G(z,2’) for the inhomogeneous ODE 3" — k%y = f(x) is determined
by solving the differential equation with f(x) = 6(z — 2’) in 0 < (x,2’) < L, and matching
solutions at = 2’ so that G is continuous and [G’]* = 1. The boundary conditions are
y(0) =y(L) =0. In 0 < z < 2/, the solution satisfying the boundary condition at = = 0 is

y(x) = Csinhkx .
The corresponding solution in ' < z < L is

y(z) = C'sinhk(z — L) .



The continuity and jump conditions at x = z’ are

Csinhkz’ = C'sinhk(z’ — L)
Ckcoshks’ = C'kcoshk(x' —L)—1,
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where we have used the identity
sinha coshb — cosha sinhb = sinh(a —b).
Thus the Green’s function is
p _ sinhkx sinhk(z’ — L) ,
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. Assume that the solution is a function of x — x’ and take x’ = 0 for convenience. Then the

Green'’s function satisfies
V3G + kG = §(x).

For x # 0, we have V2G + k?G = 0 and G is a sum of terms of the form
[agji(kr) + b (kr)] Y™ (0, ¢).

Since jo(x) = sinz/x and ng(z) = — cosz/x, we obtain the solution representing an outgoing
spherical wave at infinity (G ~ €™ /r) by adopting spherical symmetry (I = m = 0) and
choosing by = iag (so G = —iboh[()l)(kr), where hél) = jo + ing is a Hankel function). Near
r =0,
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Integrating the differential equation over an infinitesimal sphere centered on the origin, as-
suming G is continuous, and applying the divergence theorem to the V2G term as discussed
in class, we find, near r = 0,
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4. The Green’s function is
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G(x,x) =

where x] = ax’ is the image point.

(a) We apply the boundary condition G(x,x’) = 0 when r = |x| = a at the two points

x4 = ax'/r" and xp = —ax'/r’, where the diameter through x’ intersects the surface of the
sphere. When x = x4, we have [x — x| = a — 1/, |[x — x| = ar’ — a, so setting G = 0 implies
-1
+ b 0,
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Similarly, when x = xp, we have
Bla+7r")=ar +a.

The solutions to these two equations are easily seen to be
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We assume without proof that G is in fact zero whenever » = a. Note that both « and 5 are
1 when ' = a, so G(x,x’) = 0 then also.

(b) The solution to V2u = 0 with u(a, 8, ) = f(0, ¢) is then

0G(x,x’)
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where dQ' = sin0'df'd¢’. Writing p = |x — X/|, p1 = |x — x]|, and noting that
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it follows that
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Hence
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Substituting in, we have
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where have used the facts that 5 =1, p; = p when 1’ = a. Hence
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(c) The series solution to the problem is
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We can connect this to the Green’s function solution as follows. Using the addition theorem
for r < a, r; > a, v’ ~ a, we can expand 1/p and 1/p; as
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(with the same 6" and ¢’). The Green’s function thus is
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Hence
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in agreement with the series solution.



