
PHYS 501: Mathematical Physics I

Fall 2022

Solutions to Homework #3

1. We can write f(x) =
∑∞
−∞ cne

inx, where

2πcn =

∫ π

−π
f(x)e−inxdx =

∫ a

−π
P (x)e−inxdx+

∫ π

a
Q(x)e−inxdx .

(It is convenient to work with the exponential form of the series. The result applies equally
well to the trigonometric form.) Assuming that P ′ and Q′ exist (which is certainly the case
if P and Q are polynomials), integration by parts gives

2πcn =

[
P (x)

−in
e−inx

]a
−π

+

∫ a

−π

P ′(x)

in
e−inxdx

+

[
Q(x)

−in
e−inx

]π
a

+

∫ π

a

Q′(x)

in
e−inxdx

=
e−ina

in
[Q(a)− P (a)] +

1

in

∫ π

−π
f ′(x)e−inxdx ,

where we have used the fact that P (−π) = Q(π), by periodicity. If f is discontinuous at
x = a, then the first term is nonzero and cn ∼ 1/n. Otherwise, the first term is zero, and
similar arguments applied to f ′ show that cn goes to zero at least as fast as 1/n2.

2. The function is odd, so we expect a Fourier sine series

f(x) =
∞∑
n=0

an sinnπx,

where

an = 2

∫ 1

0
(1− x) sinnπx dx =

2

nπ
.

The partial Fourier sums for the requested N values are shown in the figure below. Note the
almost constant overshoot at x ≈ 1/N , extending down even as far as N = 1.
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3. (a) We seek a series solution of the ODE (1− x2)y′′ − xy′ + n2y = 0 in the form

y(x) = xk
∞∑
m=0

cm x
m =

∞∑
m=0

cm x
m+k ,

where c0 6= 0. Substituting the sum into the differential equation yields

∞∑
m=0

(m+ k)(m+ k − 1) cm x
m+k−2

−
∞∑
m=0

(m+ k)(m+ k − 1) cm x
m+k

−
∞∑
m=0

(m+ k) cm x
m+k

+
∞∑
m=0

n2 cm x
m+k = 0 ,



or, collecting terms

∞∑
m=−2

(m+ k + 2)(m+ k + 1) cm+2 x
m+k

−
∞∑
m=0

{
(m+ k)(m+ k − 1) cm x

m+k

+ (m+ k) cm x
m+k

− n2 cm x
m+k

}
= 0 .

The leading term (xk−2, from m = −2 in the first sum) gives the indicial equation

k(k − 1) = 0 ,

so k = 0 or 1. For k = 0 the next term [(k + 1)k c1] is automatically zero, so there is no
constraint on c1. For k = 1, we must have c1 = 0. The remaining terms imply

(m+ k + 2)(m+ k + 1) cm+2 = [(m+ k)2 − n2] cm ,

connecting even to even and odd to odd terms. Obviously, the odd terms in the k = 0 case,
starting with c1x, give the same sequence as the even terms in the k = 1 case, starting with
c0x. Accordingly, we can consider the odd and even series separately. Both are regular at
x = 0.

Since

cm+2 =
(m+ k)2 − n2

(m+ k + 2)(m+ k + 1)
cm ,

we see that limm→∞ cm+2/cm = 1, and the ratio test shows that each series has radius of
convergence 1; in fact, both converge for |x| = 1 (see Arfken & Weber, §5.2). Both series
diverge for |x| > 1 unless n is an integer, in which case the series terminate at m = n − k.
(The solution in this case is the Chebyshev polynomial Tn.)

(b) We again seek a series solution of the form

y(x) =
∞∑
m=0

cm x
m+k .

Because the differential equation 4x2y′′ + (1 − p2)y = 0 is homogeneous, substituting this
series into the equation implies that

[4(m+ k)(m+ k − 1) + (1− p2)]cm = 0

for all m. Since c0 6= 0, we obtain

4k(k − 1) + 1− p2 = 0 ,

so
k = 1

2(1± p) .

For m > 0, we find
4m(m± p)cm = 0 ,



so cm = 0 unless p = ∓m, in which case m+ k = 1
2(1∓ p), that is, the non-vanishing term is

just the other power-law solution. Thus the two solutions are

y(x) = x
1
2
(1±p) ,

and these are easily shown to be independent by computing their Wronskian.

(c) The first solution of
y′′ − 2xy′ = 0

is y1(x) = 1. The Wronskian development gives, for the second solution

y2(x) = y1(x)

∫ x

e−
∫ x2 P (x1) dx1 dx2 ,

where P (x) = −2x here. Thus

y2(x) =

∫ x

ex
2
2 dx2 = C +

∞∑
n=0

x2n+1

n!(2n+ 1)
,

where C is a constant. Near x = 0, y2 ∼ C + x.

4. (a) Bessel’s equation is
x2y + xy + (x2 −m2)y = 0 .

Seeking a series solution of the form y(x) = xα
∑∞

n=0 cnx
n and substituting into the equation

we find, as usual

α = ±m,

c1 = 0 ,

cn =
−cn−2

(n+ α)2 −m2
.

(i) For m = 1
2 , α = 1

2 , we have (n+ α)2 −m2 = (n+ 1)n, so

c2k =
(−1)kc0
(2k + 1)!

,

J 1
2
(x) = c0x

1
2 (1− x2

3!
+
x4

5!
· · · )

= c0x
− 1

2 sinx .

(ii) For m = 1
2 , α = −1

2 , we have (n+ α)2 −m2 = n(n− 1), so

c2k =
(−1)kc0

2k!
,

J 1
2
(x) = c0x

− 1
2 (1− x2

2!
+
x4

4!
· · · )

= c0x
− 1

2 cosx .

Using the recurrence relation Jm+1(x) = (2m/x)Jm(x) − Jm−1(x) (and setting each c0 = 1
for simplicity), we find

J 3
2
(x) = x−1 J 1

2
(x)− J− 1

2
(x) = x−

3
2 (sinx− x cosx)

J 5
2
(x) = 3x−1 J 3

2
(x)− J 1

2
(x) = x−

5
2 (3 sinx− 3x cosx− x2 sinx) .



(b) Writing f(x) =
∑∞

i=1 aiJm(αmix), we have

∫ 1

0
[f(x)]2x dx =

∫ 1

0

[ ∞∑
i=1

aiJm(αmix)

] ∞∑
j=1

ajJm(αmjx)

 x dx .
Because of the orthogonality condition∫ 1

0
Jm(αmix)Jm(αmjx)x dx = 1

2 [Jm+1(αmi)]
2 δij

(see H&R §9.5.3), only the terms with i = j survive, so∫ 1

0
[f(x)]2 x dx =

1

2

∞∑
n=1

a2n [Jm+1(αmn)]2 .


