PHYS 501: Mathematical Physics I
Fall 2022

Solutions to Homework #2

1. (a) Separating u(r,0) = R(r)©(0), Laplace’s equation becomes

r / @”
—(rR — =0.
Hence ©” /0 = —m?, where m is an integer (by the usual argument) and

r (T‘R/), —m?R = 0,

or
R’ +rR —m?R =0.

Seeking a power-law solution R ~ r® and substituting in, we find & = £m. For m = 0 the
two solutions are the same, but going back to the underlying equations we find (rR')" = 0,
so a second solution is R = logr. In addition, ©” = 0, so © = Af + B, but requiring © to be
single valued as 6 goes from 0 to 27 implies A = 0.

(b) Hence the general solution is

U (r,0) = Blogr + Z ™ (@, cos mb + by, sinmf) .

m

(¢) The boundary condition is u(a, #) = U cos® @ = U (1 + cos 26), which picks out the cosine
terms with m = 0 and m = 2. Hence the interior regular solution (non-logarithmic and
non-negative powers of r) is

2
u(r,0) = 3U <1 + % cos20> .
a

2. (a) Schrodinger’s equation is
(V2 + k%) =0,
where k% = 2mE/h?. The boundary conditions are that 1) = 0 on all surfaces of a cylinder
of radius R and height H. Take the axis of the cylinder to have » = 0 in cylindrical polar
coordinates, and the flat faces to lie at 2 = 0 and z = H. The general form of the solution is

a sum of terms of the form ‘
Y ~ T (Br)e™? sinlz,

where 32 + 12 = k? and the sinlz term is chosen to satisfy the boundary condition at z = 0.
The boundary condition at z = H then implies [H = nm, for integral n. The boundary
condition at 7 = R is Jy(BR) = 0, so BR = g, the g-th root of J,,,. Hence
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for integral m, q, and n. Clearly the minimum energy corresponds to m = 0,g = 1,n =1, so

h2 ap1 2 T2
o= 222" (3]
T om [ r) "\&m
Here, a1 = 2.405. The corresponding (unnormalized) wavefunction is

o s (7) s (3)

(b) In two dimensions, similar reasoning to that in the previous problem leads to the conclu-
sion that the wavefunction must have the form

Y~ Ty (kr) ™o

The boundary condition ¢» = 0 at » = R implies J,,,(kR) = 0. The boundary condition at
6 = 0,7 implies that the appropriate ~ ¢ term is actually sin mé, where m is a positive
integer. The minimum k, and hence E, occurs at the lowest nonzero root of J,, for m > 0,
corresponding to the first root of J1, ;1 = 3.83. Hence the ground-state solution (again

unnormalized) has
v (B sing, B (2w’
"R s S 2m\ R/

. The solutions to the wave equation in a sphere are of the form
u(r, 6, ¢) = ji(kr)P™(cos §)e™?,

for integer [ and m. The boundary condition du/0r = 0 at r = R requires j;(kR) = 0. As
illustrated in the figure below, the three lowest allowed values of kR correspond, respectively,
to the first zeros of ji and jj, and the second zero of j.
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Ji(z) = 0 for x = 2.08, j4(x) = 0 for = = 3.34. (Note that the first zero of j5 is at z = 4.52.)
Thus, the three lowest frequencies are w = kc = 2.08¢/R, 3.34¢/ R, 4.49¢/ R.

. The equation to be solved is
1 0n

Ven+n == —
+ Kk Ot

where X,k > 0 and n = 0 on the surface. For assumed time dependence n ~ e, the equation
becomes

V2n + k*n =0,
where k2 = X\ — a/k. The critical case has a = 0, or k? = \.

(a) For a sphere, the general solution is n ~ j;(kr)P™(cosf)e™?. The surface boundary
condition is j;(kR) = 0, and the minimum k corresponds to the first root of jy, so l = m = 0.
Since jo(z) ~ sinz/z, we find kR = 7 and the critical radius is

Ry=—=—.
VSN
Note that, in order to satisfy the boundary condition, increasing R has the effect of decreasing
k and hence of increasing a = k(A — k?). Thus the sphere is unstable for R > Rj.

(b) For a hemisphere, the extra boundary condition at § = /2 means that the { = 0 mode is
not a solution. We now require P/"(cos#) = 0 at § = m/2 (where we have assumed that the z
axis is the axis of symmetry of the hemisphere). The lowest-order P/ satisfying the boundary
condition is P} = cosf, so | = 1 and the radial boundary condition becomes ji(kR) = 0.
Since ji(x) ~ sinz/x? — cosz/x, the first zero has z = tanw, or * = 1.437 = 4.49. The
critical (o = 0) radius for this geometry then is
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Ry = = = 1.43Ry.
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(c) Now the system is spherical again, but the radius is R; > Ry and the system is unstable.
Writing § = 1.43, the boundary condition now implies

k‘Rlz()\—%) R1 =
= a = rA(1-877).

The growth time scale therefore is

(Y1
N C\B2—=1/) kA KM



