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Solutions to Homework #2

1. (a) Separating u(r, θ) = R(r)Θ(θ), Laplace’s equation becomes

r

R

(
rR′
)′

+
Θ′′

Θ
= 0.

Hence Θ′′/Θ = −m2, where m is an integer (by the usual argument) and

r
(
rR′
)′ −m2R = 0,

or
r2R′′ + rR′ −m2R = 0.

Seeking a power-law solution R ∼ rα and substituting in, we find α = ±m. For m = 0 the
two solutions are the same, but going back to the underlying equations we find (rR′)′ = 0,
so a second solution is R = log r. In addition, Θ′′ = 0, so Θ = Aθ+B, but requiring Θ to be
single valued as θ goes from 0 to 2π implies A = 0.

(b) Hence the general solution is

um(r, θ) = B log r +
∞∑
m

rm (am cosmθ + bm sinmθ) .

(c) The boundary condition is u(a, θ) = U cos2 θ = 1
2U(1 + cos 2θ), which picks out the cosine

terms with m = 0 and m = 2. Hence the interior regular solution (non-logarithmic and
non-negative powers of r) is

u(r, θ) = 1
2U

(
1 +

r2

a2
cos 2θ

)
.

2. (a) Schrödinger’s equation is
(∇2 + k2)ψ = 0,

where k2 = 2mE/h̄2. The boundary conditions are that ψ = 0 on all surfaces of a cylinder
of radius R and height H. Take the axis of the cylinder to have r = 0 in cylindrical polar
coordinates, and the flat faces to lie at z = 0 and z = H. The general form of the solution is
a sum of terms of the form

ψ ∼ Jm(βr)eimφ sin lz,

where β2 + l2 = k2 and the sin lz term is chosen to satisfy the boundary condition at z = 0.
The boundary condition at z = H then implies lH = nπ, for integral n. The boundary
condition at r = R is Jm(βR) = 0, so βR = αmq, the q-th root of Jm. Hence

Emqn =
h̄2k2mqn

2m
=

h̄2

2m

[
β2 + l2

]
=

h̄2

2m

[(αmq
R

)2
+
(nπ
H

)2]



for integral m, q, and n. Clearly the minimum energy corresponds to m = 0, q = 1, n = 1, so

Emin =
h̄2

2m

[(α01

R

)2
+
( π
H

)2]
.

Here, α01 = 2.405. The corresponding (unnormalized) wavefunction is

ψ ∼ J0
(α01 r

R

)
sin
(πz
H

)
(b) In two dimensions, similar reasoning to that in the previous problem leads to the conclu-
sion that the wavefunction must have the form

ψ ∼ Jm(kr) eimθ .

The boundary condition ψ = 0 at r = R implies Jm(kR) = 0. The boundary condition at
θ = 0, π implies that the appropriate ∼ eimθ term is actually sin mθ, where m is a positive
integer. The minimum k, and hence E, occurs at the lowest nonzero root of Jm for m > 0,
corresponding to the first root of J1, α11 = 3.83. Hence the ground-state solution (again
unnormalized) has

ψ ∼ J1
(α11 r

R

)
sin θ, E =

h̄2

2m

(α11

R

)2
.

3. The solutions to the wave equation in a sphere are of the form

u(r, θ, φ) = jl(kr)P
m
l (cos θ)eimφ,

for integer l and m. The boundary condition ∂u/∂r = 0 at r = R requires j′l(kR) = 0. As
illustrated in the figure below, the three lowest allowed values of kR correspond, respectively,
to the first zeros of j′1 and j′2, and the second zero of j′0.

Since

j0(x) =
sinx

x
,

we have

j′0(x) =
cosx

x
− sinx

x2
,

so j′0(x) = 0→ tanx = x, or x = 4.49. Similarly, since

j1(x) =
sinx

x2
− cosx

x
,

j2(x) = sinx

(
3

x2
− 1

)
− 3 cosx

x2
,



j′1(x) = 0 for x = 2.08, j′2(x) = 0 for x = 3.34. (Note that the first zero of j′3 is at x = 4.52.)
Thus, the three lowest frequencies are ω = kc = 2.08c/R, 3.34c/R, 4.49c/R.

4. The equation to be solved is

∇2n+ λn =
1

κ

∂n

∂t
,

where λ, κ > 0 and n = 0 on the surface. For assumed time dependence n ∼ eαt, the equation
becomes

∇2n+ k2n = 0,

where k2 = λ− α/κ. The critical case has α = 0, or k2 = λ.

(a) For a sphere, the general solution is n ∼ jl(kr)P
m
l (cos θ) eimφ. The surface boundary

condition is jl(kR) = 0, and the minimum k corresponds to the first root of j0, so l = m = 0.
Since j0(x) ∼ sinx/x, we find kR = π and the critical radius is

R0 =
π

k
=

π√
λ
.

Note that, in order to satisfy the boundary condition, increasing R has the effect of decreasing
k and hence of increasing α = κ(λ− k2). Thus the sphere is unstable for R > R0.

(b) For a hemisphere, the extra boundary condition at θ = π/2 means that the l = 0 mode is
not a solution. We now require Pml (cos θ) = 0 at θ = π/2 (where we have assumed that the z
axis is the axis of symmetry of the hemisphere). The lowest-order Pml satisfying the boundary
condition is P 0

1 = cos θ, so l = 1 and the radial boundary condition becomes j1(kR) = 0.
Since j1(x) ∼ sinx/x2 − cosx/x, the first zero has x = tanx, or x = 1.43π = 4.49. The
critical (α = 0) radius for this geometry then is

R1 =
1.43π

k
=

1.43π√
λ

= 1.43R0 .

(c) Now the system is spherical again, but the radius is R1 > R0 and the system is unstable.
Writing β = 1.43, the boundary condition now implies

kR1 =
(
λ− α

κ

)1/2
R1 = π

⇒ α = κλ
(
1− β−2

)
.

The growth time scale therefore is

τ = α−1 =

(
β2

β2 − 1

)
1

κλ
=

1.96

κλ
.


