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Solutions to Homework #6

1. (a) The Kuzmin potential is

ΦK(R, z) = − GM√
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.

For z > 0 denote the denominator by s = (R2 + (a+ z)2)1/2. Then
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and similarly for z < 0. Φ is not differentiable at z = 0; the potential represents a mass sheet
in that plane.

(b) Let the surface density of the sheet be Σ(R), and consider a “Gaussian pillbox”—a right
cylinder of cross-sectional area δA and negligible extent in the z direction, with axis parallel
to the z axis—straddling the sheet. Let az(R, z) = −∂Φ∂z be the z component of the
accdeleration. Clearly az(R,−z) = −az(R, z) and, in particular, the acceleration just below
the disk is equal and opposite to the acceleration just above it, az(R, 0−) = −az(R, 0+).
Hence, by Gauss’s law, −2az(R, 0+)δA = 4πGΣ(R)δA, so
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(c) The circular orbit speed is vc, where
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2. The number density is

n(z) =
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where we can take the upper limit to be infinite so long as vesc � σ (which we assume). Then
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Thus n0 is the number density in the plane, at z = 0.

Now let φ = Φ/σ2 and ρ = mn. Then Poisson’s equation Φ′′ = 4πGρ becomes(
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so, setting y = z/z0, where z2
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We can immediately integrate this once to find
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Choosing φ = φ′ = 0 at z = 0 sets the constant equal to 1, and integrating again gives
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We can evaluate the integral by setting u = e−p/2, so
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3. For a distribution function f(E), we have
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Obviously these are the same, so it follows that 〈v2
x〉 = 〈v2
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z〉, and the velocity distribu-

tion is isotropic.



4. (a) By definition, E = ψ − 1
2v

2, v2 = v2
r + v2

t , and L = rvt. Writing X = L2, we can express
the volume element in velocity space, d3v = 2πvtdvtdvr, as
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(b) For a distribution function
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we have
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Now write v2
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for ψ(r) ≥ E0. By substituting y = (E − E0)/(ψ − E0), it is easily shown that the integral is
simply
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5. (a) For a flat rotation curve, the Oort constants A and B satisfy

A+B =
dV

dR
= 0, A−B =

V

R
= Ω,

where V is the rotation speed and Ω is the circular frequency. Hence A = −B = 1
2Ω. For

the Galaxy, we have V0 = 220 km/s, R0 = 8 kpc, so Ω0 = 27.5 km/s/kpc. The epicyclic
frequency κ is given by κ2 = −4BΩ0, so κ =

√
2Ω = 39 km/s/kpc = 1/(25 Myr).

(b) For a star in epicyclic motion with radial amplitude X, the x and y velocities relative to
the guiding center are (S&G, p. 138)

vx = −κX sinψ,

vy = −ΩX cosψ,

where ψ = κt+ ψ0 is the epicyclic phase. Solving for the observed velocities vx = −10 km/s,
vy = 5 km/s, we find X = 0.31 kpc, ψ = 125◦. The radius of the guiding center then is
Rg = R0 −X cosψ = 8.2 kpc.

(c) The figure fig6.5c.png shows Ω and the inner and outer Lindblad resonances for 2-
armed (red) and 4-armed (green) spirals. The black line corresponds to a pattern speed of 30
km/s/kpc. It intersects the red curves at R = 2.1 and R = 12.5 kpc, and the green curves at
R = 4.7 and R = 10 kpc. Thus the 2-armed spiral can propogate in an annulus of area 480
kpc2, versus 240 kpc2 for the 4-armed spiral. The exact numbers will of course depend on
the pattern speed chosen, but the factor of roughly 2 persists.


