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There will be no induced current in the ring (zero!).

The magnetic field around the wire is tangent to the ring. Therefore, the magnetic flux is
∫
BdA cos(θ) = 0, since the angle

between the magnetic field and unit vector normal to the plane of the ring is 90◦ and cos(90◦) = 0. Then, Faraday’s law
predicts that ~ENC = 0 at points inside the metal ring, and therefore no current will be “pushed” through the ring.

23.P.26

Assume the magnet’s north pole is falling from above the tube. Assume the tube is composed of many thin concentric copper
rings. As the falling north pole approaches the topmost ring, the magnetic flux through that ring changes with the bar’s
magnetic field pointing down and increasing in magnitude. There is a curly electric field in the conducting ring that curls
counterclockwise as seen from above the tube. The curly electric field drives a counterclockwise conventional current in the
ring. This current creates a brand new magnetic field at the ring’s center with an induced north pole repelling the falling
north pole. Therefore, the bar’s motion will be retarded as it falls through the topmost ring. This argument holds for all
successive rings as the north pole falls through them.

Now consider the falling south pole. As it falls through the topmost ring, the magnetic flux through that ring changes with
the bar’s magnetic field pointing down and decreasing in magnitude. There is a curly electric field in the conducting ring
that curls clockwise as seen from above the tube. The curly electric field drives a clockwise conventional current in the ring.
This current creates a brand new magnetic field at the ring’s center with an induced north pole pointing down, attracting the
falling south pole. Therefore, as above, the bar’s motion will be retarded as it falls. This argument holds for all successive
rings as the south pole falls through them.

As an additional exercise, students should write out an explanation for reversing the magnet and dropping it.

23.P.27

(a) ~B points away from the loop toward the coil

(b) There is no field in the copper loop.

(c) There is no location Q in the copper loop, but there is still no field anywhere in the loop.

(d) dI
dt < 0 therefore

∣∣∣~B∣∣∣ decreases and d~B
dt points toward the loop away from the coil.

(e) -d~Bdt points away from the loop toward the coil.

(f) At P, ~E
NC

is in the −y direction.

(g)
∣∣∣Φmag

∣∣∣ decreases with time.

23.P.28

(a) ∣∣∣Φmag

∣∣∣ =
∣∣∣~B∣∣∣A =

(µ
o

4π

)
A ≈

(
µ

o

4π
2NIπr3

c

d3
cl

)(
πr2
l

)
≈

(
1× 10

−7 T · m2

C · m/s

)
2(300)(5 Aπ2 (0.09 m)2 (0.04 m)2

(0.22 m)3

≈ 2.6× 10
−6

T · m2

(b) Treat the coil as a magnetic dipole.

(c) There is no electric field in the loop.
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(d) dI
dt = −0.3 A/s and ~E

NC
is in the −y direction.

(e) ∣∣∣∣dΦ
mag

dt

∣∣∣∣ =
µ

o

4π
2Nπ2r2

cr
2
l

d3
cl

∣∣∣∣dIdt
∣∣∣∣

≈
(

1× 10
−7 T · m2

C · m/s

)
2(300)π2 (0.09 m)2 (0.04 m)2

(0.22 m)3 (0.3 A/s)

≈ 2.16× 10
−7

V

(f)

|emf| =
∣∣∣∣dΦ

mag

dt

∣∣∣∣
≈ 2.16× 10

−7
V

(g)

|emf| =
∮
C

~E
NC
• d~l = 2πrl

∣∣∣~E
NC

∣∣∣∣∣∣~E
NC

∣∣∣ =
|emf|
2πrl

≈ 2.16× 10
−7

V
2π (0.04 m)

≈ 8.59× 10
−7

V/m

(h) Removing the loop doesn’t change the curly electric field.

23.P.29

(a) -dervectBt is into the page, so ~E
NC

is clockwise around the loop. So at P, ~E
NC

is up.

(b)

d
∣∣∣~B∣∣∣
dt

= 3bt2

|emf| =
d
∣∣∣~B∣∣∣
dt

πr2
1 =

∮
C

~E
NC
• d~l = 2πr1

∣∣∣~E
NC

∣∣∣∣∣∣~E
NC

∣∣∣ =
3
2
bt2r1

≈ 3
2
(
1.4 T/s3

)
(1.3 s)2 (0.036 m)

≈ 0.128 N/C

(c) At Q, ~E
NC

is down.
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(d)

|emf| = 3bt2πR2 =
∮
C~E

NC
• d~l = 2πr2

∣∣∣~E
NC

∣∣∣∣∣∣~E
NC

∣∣∣ =
3bt2R2

2r2

≈ 3
(
1.4 T/s3

)
(1.3 s)2 (0.17 m)2

2 (0.51 m)
≈ 0.2 N/C

23.P.30

(a) ∣∣∣~B∣∣∣ =
µ

o

4π
2I
x∣∣∣∣∣d~Bdt

∣∣∣∣∣ =
µ

o

4π
2I |~v|
x2

≈
(

1× 10
−7 T · m2

C · m/s

)
2 (3 A) (3.2 m/s)

(0.13 m)2

≈ 1.14× 10
−4

T/s

(b)

|emf| = N

∣∣∣∣dΦ
mag

dt

∣∣∣∣ = N

∣∣∣∣∣d~Bdt
∣∣∣∣∣πr2

≈ (11)
(

1.14× 10
−4

T/s
)
π (0.02 m)2

≈ 1.58× 10
−6

V

(c) d~B
dt is into the page.

(d) ~E
NC

is counterclockwise in the loop.

23.P.31

(a) ∣∣∣~B
1

∣∣∣ =
µ

o

4π
2 |~µ|
x3

=
µ

o

4π
2N1I1πr

2
1

x3∣∣Φ
2

∣∣ =
∣∣∣~B

1

∣∣∣A2 =
µ

o

4π
2N1N2π

2r2
1r

2
2I1

x3

|emf| =
∣∣∣∣dΦ

mag

dt

∣∣∣∣ =
µ

o

4π
2N1N2π

2r2
1r

2
2

x3

∣∣∣∣dI1dt
∣∣∣∣

=
µ

o

4π
2N1N2π

2r2
1r

2
2

x3
(b+ 2ct)

(b) dI1/dt > 0 so d~B
dt is toward the first coil so -vectderBt is toward the second coil. So at P, ~E

NC
is down.



20

E =
∆V
2πr

=
3.95× 10−9 V
2π(0.005 m)

= 1.26× 10−7 V
m

23.P.38

(a) ~B is out of the page and increasing. So −d~Bdt is into the page and the induced current in the rectangular coil flows
counterclockwise.

(b) Apply Faraday’s Law to the rectangular coil.

|emf| =
∣∣∣∣dΦ
dt

∣∣∣∣
= NA

solenoid

∣∣∣∣dBdt
∣∣∣∣

= Nπr2 d

dt
(0.07 + 0.03t2)

= Nπr22(0.03
T
s2

)t

= 4π(0.03 m)22(0.03
T
s2

)(2 s)

= 0.00135 V
= 1.35 mV

Apply Ohm’s Law to the coil.

∆V = IR

I =
∆V
R

=
0.00136 V

0.1 Ω
= 0.0136 A
= 13.6 mA

23.P.39

(a) Fundamental principles: Changing magnetic field in solenoid creates curly non-Coulomb electric field around itself,
which drives current in the metal ring. This new current creates a magnetic field, and at the center of the ring this
field plus the magnetic field of the solenoid makes the net magnetic field at that location. (See Figure 3.)
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4. The magnetic flux through the square (of side L = 2 cm) is

ΦM (t) =

∫ L

0

∫ L

0
Bz(x, y, y) dxdy

= 4t2
∫ L

0
dx

∫ L

0
y dy

= 2t2L3 .

Hence dΦM/dt = 4tL3 = 9.6 × 10−5 V at time t = 3 s. This is the induced emf around the
wire. Its sense, by Lenz’s law, opposes the increase of the flux, so its associated magnetic
field must be in the negative z direction, and the induced electric field is in the clockwise
direction.

5. In the diagram below, in steady state, the bar slides downward with speed V at an angle θ
to the horizontal. The magnetic flux through the L× w rectangle is ΦM = BLw cos θ.

(a) As the bar moves,
dΦM

dt
= BL cos θ

dw

dt
= BL cos θ v,

so the induced emf is E = BLv cos θ and the induced current is I = BLv cos θ/R.

The magnetic force on the bar is ILB to the left. Its component up the slope is ILB cos θ.
Equating this (in steady state) to the gravitational force down the ramp, mg sin θ, we
find

(BLv cos θ/R) (LB cos θ) = mg sin θ,

so

v =
mgR

B2L2

sin θ

cos2 θ
. (†)

(b) As the bar slides, the rate of change of gravitational potential energy is

− d

dt
(mgw sin θ) = −mgv sin θ.

The power induced in the bar is

P = I × emf =
(BLv cos θ)2

R
= mgv sin θ [from (†)].

(c) If B pointed down, rather than up, the emf in the bar would reverse direction, but the
steady-state velocity would be the same.



6. For an R–L circuit, we have

I(t) =
E
R

[
1− e−(R/L)t

]
.

(a) Before the fuse blows, R = 0, since the fuse is in parallel with the resistor, so the above
equation is indeterminate. Going back to first principles, the loop rule around the circuit in
that case (with zero resistance) gives

E − LdI
dt

= 0,

so
dI

dt
=
E
L
,

the solution to which [with I(0) = 0] is

I =
E
L
t = 2t here.

Thus the current reaches 3 A at time t = 1.5 s.

(b) At that point the fuse blows and the resistance in the circuit jumps to R = 15 Ω. The
steady-state current in the new circuit is E/R = 2

3 A.

(c) Because of the inductance in the circuit, the current through the inductor cannot immedi-
ately drop to the new steady-state value. Any attempt to reduce the current too rapidly will
result in a large emf in the inductor opposing it. To account for the instantaneous current of
I = 3 A immediately after the fuse blows, we must have

E − IR− LdI
dt

= 0,

or
dI

dt
=
E − IR
L

= −7A/s.

Subsequently, the current drops exponentially toward the steady-state value, with a time scale
τ = L/R = 1

2 s.




