
Physics 115: Contemporary Physics III

Spring 2013

Homework 5 Solutions

1. In the unprimed frame, the charged particle is at rest and the fields are

E =
qr̂

4πε0r2
, B = 0.

Transforming to the primed frame moving with velocity v relative to the first, and noting
that ε0µ0 = 1/c2, we have

B′
‖ = 0, B′

⊥ = −γv ×E

c2
= − γ µ0

4π

qv × r̂

r2
,

which (apart from the γ) is the Biot-Savart law for the magnetic field due to a particle with
velocity −v.

4. First, argue from considerations of symmetry that the gravitational field g at location r
relative to the mass m must be radial (no transverse component) and depend only on r = |r|
(no angular dependence), i.e. g = g(r) r̂. Second, surround the mass with a Gaussian
surface in the form of a sphere centered on it. Then dA = dA r̂ and g · dA = g(r) dA, so
Φg = 4πr2g(r) = −4πGm, by Gauss’s law. Hence

g(r) = −GM
r2

.

The significance of the minus sign is that it means the gravitational field is attractive (for
positive mass m).
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Φ
net

=
Σq

inside

ε
0

Σq
inside

= (224
N · m2

C
)(8.85× 10−12 N · C2

m2
)

= 1.98× 10−9 C

(c) This pattern of electric field is approximately created by a uniformly charged capacitor with one plate aligned with
the diagonal of the cube. If the plate separation is at least the length of 1

2 (0.55 m) and if the area of each plate is
much larger than the cross-sectional area of the cube, sliced along the diagonal, then the approximation is valid since
~E

outside
≈ 0 and ~E

inside
≈ uniform.

22.X.20

For whatever Gaussian surface you choose, the electric field due to the ring at the surface will not be uniform in magnitude
or direction across the entire surface. As a result, there is no symmetry that can be used to simplify the integral. Gauss’ law
is still valid; however, the integral cannot be easily solved.

22.X.21

According to Gauss’ law, electric field is zero in the interior of a metal, even if there is a hole in the metal and the metal is
simply a shell. This phenomenon can be referred to as “screening.” Thus, if your car is struck by lightening, the electric field
within the car will remain zero even if the car acquires a net charge.

If you step out of the car, then excess charge on the car can flow from the car through you to ground.

22.P.22
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Figure 2: A sketch of the situation

(a) For r < R
1
, the electric field is

~E = − 1
4πε

0

Q

r2
r̂
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E =
1

4πε
0

−Q+ 3Q
(r3−R3

1
)

(R3
2
−R3

1
)

r2


~E is in the radial direction with the magnitude shown above for R

1
< r < R

2
.

(c) For R
2
< r, Σq

inside
= −Q+ 3Q = 2Q. So Gauss’ Law gives

E =
2Q

4πr3ε
0

=
1

4πε
0

(
2Q
r2

)

~E is radial, of course.

22.P.23

(a) In this part of the problem we reason from what we know about the field to determine what and where the charge must
be. To see if there is any charge inside the wire, we draw a (mathematical, imaginary) cylinder of length d completely
inside the inner wire, and far from the ends of the wire, as shown in Figure 3.

Figure 3: Gaussian cylinder inside the wire, in Question 22.P.23.

By Gauss’s Law:

∮
~E · n̂dA =

Σqinside
ε0

At equilibrium E = 0 in metal, so flux on cylinder = 0 and Σqinside = 0.

So there cannot be any charge inside the wire. This means that all the positive charge is on the outer surface of the
inner wire. To see how much of the negative charge is on the inner surface of the outer cylinder, and how much is on
the outer surface, we draw a (mathematical) cylindrical surface inside the metal of the outer cylinder, again far from
the ends of the wire, as shown in Figure 4.

Apply Gauss’s Law:
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Figure 4: Gaussian cylinder inside the outer cylinder, in Question 22.P.23.

∮
~E · n̂dA =

Σqinside
ε0∫

end caps

~E · n̂dA+
∫

curved sides

~E · n̂dA =
Σqinside
ε0

The curved (side) part of the cylinder is entirely within the metal, and as before E = 0 inside the metal in equilibrium,
so flux on the curved part is zero. Only part of the end cap is inside the metal; the other part is in the air gap, where
there is a nonzero electric field.

Looking end-on at the cylinder, we see that n̂ is out of the page, while ~E points out from the inner wire (by symmetry)
and is in the plane of the page, parallel to the surface of the end cap, as shown in Figure 5.

Figure 5: Electric field and the unit normal vector shown in the end view, in Question 22.P.23.

The field is therefore perpendicular to n̂, and ~E · n̂ = 0 . So the flux on the end caps of the mathematical cylinder is
zero, and therefore the net flux on the cylinder is zero. By Gauss’s Law, the net charge enclosed by this cylindrical
surface must therefore be 0. We know that the cylinder encloses a charge (+Q/L)d on the inner wire. Thus:
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0 =
(
Q

L

)
d+ (density on surface)d

(density on surface) = −
(
Q

L

)

All the negative charge is on the inner surface.

(b) In this part of the problem we reason from what we now know about the charge distribution, plus what we know about
the direction and symmetry of E , to get an algebraic expression for the magnitude of E inside the air gap. We place
our mathematical surface so that at least one side (the curved part) is located in the region where we want to know
the electric field—-in the air gap (see Figure 6).

Figure 6: Gaussian surface for part(b) in Question 22.P.23.

Again:

∮
~E · n̂dA =

Σqinside
ε0∫

end caps

~E · n̂dA+
∫

curved sides

~E · n̂dA =
Σqinside
ε0

By symmetry, the electric field in the air gap must point outward from the wire.

End Caps: On the end caps, therefore, as before, ~E · n̂ = 0 and the flux=0. See Figure 7.

Curved Surface: E is nonzero, and points outward, parallel to n̂ as shown in Figure 8.

So, ~E · n̂ = E. On the curved surface, at a constant distance from the wire, the magnitude E is constant, by symmetry.
We can partially evaluate the flux:

∫
curved sides

~E · n̂dA =
∫

curved sides

Ecos(0)dA

= E

∫
closed surface

dA

= E2πrd
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Figure 7: End caps for part(b) in Question 22.P.23.

Figure 8: Electric field and unit normal vector for part through the curved surface for part (b) in Question 22.P.23.

(where 2πrd is the area of the side of the cylinder)

The charge inside the cylinder is equal to (charge per unit length)? (length of cylinder):
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∮
~E · n̂dA =

Σqinside
ε0∫

end caps

~E · n̂dA+
∫

curved sides

~E · n̂dA =
Σqinside
ε0

0 + E2πrd =

(
+Q
L

)
d

ε0

E =

(
+Q
L

)
d

2πrdε0

=
Q/L

2πε0r

This is the magnitude of E in the air gap. Note that it is the same as the electric field of a uniformly charged long
straight wire.

(c) Finally we find the magnitude of the electric field outside the whole assembly. Our closed surface now extends around
both wires as shown in Figure 9.

Figure 9: Gaussian surface for part (c) in Question 22.P.23.

As above, on end caps ~E · n̂ = 0. On curved surface E must point outward, so ~E · n̂ = E, so flux = E(2πrd). Gauss’
Law gives:

∮
~E · n̂dA =

Σqinside
ε0∫

end caps

~E · n̂dA+
∫

curved sides

~E · n̂dA =
Σqinside
ε0

0 + E2πrd =

(
+Q
L

)
d+

(
−Q
L

)
d

ε0

E2πrd = 0
E = 0

Therefore, E = 0 outside of the coaxial cable.

22.P.24
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∮
~B · d~l = ~B

top
· d~l

top
+ ~B

right
· d~l

right
+ ~B

bottom
· d~l

bottom
+ ~B

left
· d~l

left

= (1.6× 10−4 T) cos (35◦)(0.6 m) + 0 + (1.6× 10−4 T) cos (35◦)(0.6 m) + 0
= 1.57× 10−4 T

Ampere’s Law is

∮
~B · d~l = µ

0
I

I =
1.57× 10−4 T

µ
0

= 125 A

22.P.30

Choose a D-shaped Amperian path along the center line of the plastic frame (the dashed gray path in Figure 10).

Figure 10: Amperian path and a few magnetic field vectors for Question 22.P.30.

Ampere’s law is

∮
~B · d~l = µ0Iinside

We are told that the magnetic field has approximately the same magnitude B throughout the plastic, and presumably it is
approximately parallel to our chosen path. Therefore ~B · d~l = Bdl , and B can be taken out of the integral.

Also, a soap bubble stretched over our path is pierced N times by wires carrying current I, so we have
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B

∮
dl = µ0NI

The integral of dl is the path length, which is one diameter plus one-half of the circumference or (2R+ πR). Substitute into
Ampere’s law and solve for B.

B

∮
dl = µ0NI

B(2R+ πR) = µ0NI

B =
µ0NI

(2R+ πR)

22.P.31

(a) From the diagram in Figure 11 it is clear that there is cancellation of the vertical components of magnetic field
contributed by two wires to the left and the right of the observation location. Therefore the direction of the magnetic
field must be to the left at the location above the wires and to the right at the location below the wires.

Figure 11: Magnetic field at the given locations in Question 22.P.31.

(b) Use AmpereÕs law, and go counterclockwise around the closed rectangular path.

Along the sides of the path
∫
~B · d~l = 0, since ~B is perpendicular to d~l.

Along the upper part of the path,
∫
~B · d~l = Bw.

Along the lower part of the path,
∫
~B · d~l = Bw.

Therefore, applying Ampere’s law gives

∫
~B · d~l = µ0Iinside path

2Bw = µ0Iinside path

The current inside the amperian loop is Iinside path =
(
N
L

)
wI since there are N/L current-carrying wires per meter,

and a width w of the enclosing path. Thus,
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B =
µ0

4π
2(I2 − I1)

R

This is the same as the magnitude of the magnetic field at a distance R from a long, straight wire with current I2− I1. Note
that if I1 = I2, then B = 0 as expected. Also, if I1 > I2, then B will be negative meaning that would be tangent to the path
and clockwise.

22.P.34

The current density (current/area) is the same throughout the wire. Sketch an Amperian loop within the wire with radius
r. Then, the current through this loop i per unit area is the same as the total current per unit area.

i

πr2
=

I

πR2

i = I
r2

R2

The magnetic field is tangential to the Amperian loop. Apply Ampere’s law by integrating counterclockwise around the loop
if looking at the loop from the right end. Then the current flows out of the surface and is positive.

∮
~B · d~l = µ0Iinside path

B(2πR) = µ0I
r2

R2

B =
µ0

2π
Ir2

R3

22.X.35

Units of div( ~E) are N/C ·m2

m3 = N
(C ·m) = N/C/m.

22.X.36

Treat the nucleus as a sphere with uniform charge distribution throughout the volume of the sphere. The electric field at the
surface is radial and has a magnitude equal to that of a point charge Q at the center of the sphere. The area of the sphere
is 4πR2 and its volume is 4/3πR3.

The divergence of the electric field through the sphere is

div(~E) =
∮
~E · n̂dA
∆V

=
E(4πR2)
4/3πR3

=
3E
R
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