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(2) Quasi-steady state: magnitude of ~E is uniform throughout the wire, drives current in the direction to reduce charge on
capacitor plates (top plate gets less positive, bottom plate gets less negative). There may be some excess charge on the
bends, but the main feature is that there is a gradient of surface charge all along the wire (see Figure 9). As capacitor
charge decreases, polarization and surface charge also decrease (proportionally). Hence ~E decreases and electron current
i = nAu

∣∣∣~E∣∣∣ decreases with time (may take many seconds).
19.P.63 Fundamentals of a capacitor circuit
1) Initial transient (first few nanoseconds): electric field near capacitor initially due to charge on metal plates
and due to the induced dipoles in the plastic (these two fields are opposite to each other, so E is smaller in
the wires than it would be without the plastic).

This pattern of field forces mobile electrons to flow in the opposite direction to the field. On the bends,
charge builds up on the surface due to net current entering or leaving a region. The surface charge and the
capacitor charges make a field everywhere in a direction tending toward a steady-state pattern of uniform E
throughout the wire, yielding uniform electron current (current conservation in the quasi-steady state, con-
stant cross section for uniform v and E).

2) Quasi-steady state: magnitude E uniform throughout the wire, drives current in the direction to reduce
charge on capacitor plates (top plate gets less positive, bottom plate gets less negative). There may be some
excess charge on the bends, but the main feature is that there is a gradient of surface charge all along the
wire. As capacitor charge decreases, polarization and surface charge also decrease (proportionally). Hence E
decreases  electron current i = nAuE decreases with time (may take many seconds).

3) Eventually charge on plates reduced to zero, no polarization in plastic, no surface charge on wire: static
equilibrium.

Insulating
material

+Q

–Q

Enet

Enet

Eplates

Edipoles

Eplates

Edipoles

Enet

Figure 9: Sketch the quasi-steady state for the circuit in Question 10.P.56.

(3) Static equilibrium: eventually charge on the plates is reduced to zero, there is no polarization in the plastic, and there
is no surface charge on the wire.

20.P.57

(a) Apply the loop rule to this circuit when the capacitor is fully charged. Then, emf = ∆VC = Q/C. Thus, the charge on
the capacitor when fully charged is Q = C(emf).

(b) The potential difference across the plates remains constant, and the net electric field within the capacitor remains
constant since Enet = ∆VC/s. However, there is a component of ~Enet that is due to polarized molecules in the
dielectric. In fact, Enet,x = Evacuum,x − Edipoles,x. (I’ve assumed that the capacitor is aligned with the x-axis with
~Enet in the +x direction.) Since Enet remains constant, then Evacuum must have increased. Since Evacuum = (Q/A)/ε,
then Q must increase, and current runs through the bulb until the capacitor is again fully charged.

From the loop rule applied to this circuit, Q = C(emf) with a capacitance that is now C = KC0, where C0 is the
capacitance with air between the plates. Since C is larger by a factor K, then Q is also larger by a factor of K. If Q0 is
the charge on the capacitor before the dielectric is inserted, then Q = KQ0 is the charge after the dielectric is inserted.

20.P.58

First sketch a circuit, like the one shown in Figure 10.

Now, sketch the capacitor with the dielectric and the capacitor without the dielectric, as shown in Figure 11.

The net electric field within the plates is related to the potential difference across the plates by Enet = ∆V/s. Applying the
loop rule to the circuit shows that emf = ∆VC , so Enet = emf/s.

Since the potential difference across the plates doesn’t change when you remove the dielectric, then the net electric field must
remain the same. However, when the dielectric is within the plates, the net electric field is due to charge on the plates as well
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20.P.59

(a) The electric potential outside a uniformly charged sphere is that of a point particle at the center of the sphere,
V = 1

4πε
0

Q
r . Inside the sphere, the electric field is zero. Thus, at r = r, V = 1

4πε
0

Q
r .

At r ≥ r
2
, V = 1

4πε
o

Q
r + 1

4πε
o

(−Q)
r = 0. Just inside r

2
, V = 1

4πε
o

Q
r
2
. Thus,

∆V = V
2
− V

1

=
1

4πε
o

Q

r
2

− 1
4πε

o

Q

r
1

=
1

4πε
o

Q(
1
r
2

− 1
r
1

)

Solve for Q to get

Q =
4πε

0

( 1
r
2
− 1

r
2

)
∆V

Comparing to Q = C∆V gives

C =
4πε

0

( 1
r
2
− 1

r
1

)

(b)

1
r
2

− 1
r
1

=
r
2
− r

1

r
1
r
2

=
s

r
1
r
2

C = 4πε
0

(r
1
r
2

s

)

Since r
1
≈ r

2
= R, then r

1
r
2
≈ R2 and

C ≈
ε
0
4πR2

s

C ≈
ε
0
A

s

20.P.60
According to the loop rule for the circuit, emf = ∆V

C
=

E
net
s . If s is suddenly increased, then E

net
must decrease.

Since E
net

=
Q
A

Kε
0
, then Q must decrease. There will be a current as positive charge (conventional current) leaves the

positively charged plate, until the capacitor is in static equilibrium once again. Then the new charge on the capacitor will
be Q

new
= C

new
(emf) =

Kε
0
A

snew
.

Note that the new capacitance is less since s
new

is larger.

20.P.61
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emf − I(R
1

+R
2
) = 0

I =
emf

R
1

+R
2

=
7.9 V

23 Ω + 44 Ω
= 0.118 A

∆V
1

= IR
1

= (0.118 A)(23 Ω)
= 2.71 V

(b)

I
2

= I
1

= 0.118 A

20.X.69

A light bulb filament is non-ohmic. Its resistance increases with temperature. A greater current causes the filament to get
hotter, which causes resistance to increase.

When 1 bulb was connected to the battery, it had a greater resistance than when two bulbs in series were connected to the
battery.

20.X.70

Suppose R
1

= 10 Ω, R
2

= 5 Ω, and R
3

= 20 Ω.

1
R

2,3

=
1
5

+
1
20

R
2,3

= 4 Ω
R

eq
= R

1
+R

2,3
= 10 Ω + 4 Ω = 14 Ω

20.X.71

(a)

1
R

1,2

=
1
R

1

+
1
R

2

=
1

31 Ω
+

1
47 Ω

R
1,2

= 18.7 Ω
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Figure 17: A graph of the electric potential V as a function of location along the circuit in Question 20.P.82.

Figure 18: Surface charge for the circuit in Question 20.P.82.

20.P.83

(a) Apply the loop rule to ABCHA:

emf1 − I1R1
− I

4
R

4
= 0

Apply the loop rule to FEDCF:

emf
2
− I

2
R

2
− I

3
R

3
= 0
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Apply the loop rule to CFGHC:

−I
3
R

3
− I

5
R

5
+ I

4
R

4
= 0

(Note the positive I
4
R

4
term since the loop goes H-C and the current goes C-H. This means that C is at a higher

potential than H and V
C
− V

H
is positive, at least according to the direction of I

4
if it’s positive.)

Apply the node rule at C:

I
1

+ I
2

= I
3

+ I
4

Apply the node rule at H:

I
4

+ I
5

= I
1

Substitute emfs and resistances into the above equations and solve for I
1
, I

2
, I

3
, I

4
, and I

5
using linear algebra.

(b)

V
D
− V

A
= (V

H
− V

A
) + (V

C
− V

H
) + (V

D
− V

C
)

Since V
H

= V
A
, write this as

V
D
− V

A
= (V

C
− V

A
) + (V

D
− V

C
)

= I
4
R

4
+ I

2
R

2

Since directions of current are presumed to be positive, then V
D
− V

A
is positive.

(c) The current through battery 2 is I
2
. So, P = (emf

2
)I

2
.

20.P.84

(a) A sketch is shown in Figure 19. With the switch open, no current; surface charge + on left branch, – on right branch.
There is an electric field in the gap between the two parts of the switch.

(b) No current flows through the wire, so all parts of a wire that are connected to one terminal of the battery are at the
same potential V as that terminal of the battery. Thus, VK and VD are at the same potential and VD − VK = 0. Since
VB = V+,bat and VC = V−,bat, then VB − VC = ∆Vbat = 3.0 V.

(c) Apply the loop rule to loop ABCDGHKLMNA (basically batteries, Bulb 3 and Bulb 1). Define all current directions
to be from high potential to low potential (i.e. current points in the direction toward the negative terminal of the
battery). Thus,
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Figure 19: Surface charge distribution on the circuit for Question 20.P.84.

2emf − I3R3 − I1R1 = 0

Apply the loop rule to loop ABCDEFKLMNA (basically batteries, Bulb 2 and Bulb 1). Define all current directions to
be from high potential to low potential (i.e. current points in the direction toward the negative terminal of the battery).
Thus,

2emf − I2R2 − I1R1 = 0

Apply the node equation at K.

I2 + I3 = I1

The above three equations can be used to solve for I1, I2, and I3.

(d) VC − VF is simply the potential difference across bulb 2 (since VC = VD = VE), and ∆V2 = I2R2.

(e) Pbat = ∆VbatIbat. Since the battery and bulb 1 are in series, then Pbat = (3.0 V)I1.

(f) The equations are:

3− I3(30)− I1(10) = 0
3− I2(40)− I1(10) = 0

I2 + I3 = I1
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You can solve this simultaneous equations using linear algebra or substitution or the solve function on a TI calculator.
The solutions is I1 = 21/190 = 0.111 A, I2 = 9/190 = 0.0474 A, and I3 = 6/95 = 0.0632 A.

(g) i = i1 = I1/e = (0.111 A)/(1.602× 10
−19

C = 6.94e17) electrons per second.

(h) VC − VF = ∆V2 = I2R2 = (0.0474 A)(40 Ω) = 1.90 V

(i) Pbat = (3.0 V)I1 = (3.0 V)(0.111 A) = 0.333 W

(j) ∆V = EL for a uniform electric field. Thus, E2 = (1.9 V)/(0.008 m) = 238 V/m

20.P.85

W =
∫ Q

0

q

C
dq

=
1
C

∫ Q

0

qdq

=
1
C

q2

2

∣∣∣∣Q
0

=
1
2
Q2

C

20.X.86

∆V
bat

= emf − Ir
int

When short-circuited, ∆V
bat

= 0 and the internal resistance of the battery can be calculated to be r
int

= 6 V
12 A = 0.5 Ω.

If a 1 Ω resistor is connected, then ∆V
bat

= ∆V
R

= IR, and

IR = emf − Ir
int

I(R+ r
int

) = emf

I =
6 V

(1 Ω + 0.5 Ω)
= 4 A

20.P.87

(a)

∆V = emf − Ir
int

0 = emf − Ir
int

r
int

=
emf

I
=

9 V
18 A

=
1
2

Ω
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(b)

P = (emf)I
= (9 V)(18 A) = 162 W

(c)

162 J

(d)

∆V
R

= emf − Ir
int

IR = emf − Ir
int

I(R+ r
int

) = emf

I =
emf

R+ r
int

=
9 V

(10 Ω + 0.5 Ω)
= 0.857 A

(e)

P = ∆V I

=
(
I

R

)
I

=
I2

R
=

(0.857 A)2

10 Ω
= 0.0735 W

(f) It reads ∆V = emf − Ir
int

= 9 V − (0.857 A)( 1
2Ω) = 8.57 V

20.P.88

(a) A sketch of the electric field and the surface charge is shown in Figure 20.

(b) See Figure 20

(c) Apply the loop rule to the wire. The electric field is the same everywhere in the wire. Thus emf = ∆Vwire = EwireLwire.
Thus Ewire = emf/Lwire = (12 V)/(0.4 m) = 30 V/m.

(d) ∆Vwire = EwireLwire = (30 V/m)(0.05 m) = 1.5 V.

(e) Conventional current flows into the negative terminal of the ammeter. As a result, it will read a negative current.
To calculate the magnitude of the current, apply the loop rule, emf = ∆Vwire = IR. Solving for I gives, I =
(12 V)/(50 Ω) = 0.24 A.

(f) i = I/e = (0.24 A)/(1.602× 10
−19

C) = 1.5 × 1018 electrons per second. In 60 seconds, (1.5 × 1018)(60) = 9 × 1019

electrons flow from the negative terminal of the battery.


