

Figure 19.1.1. Representation of the Forward Time Centered Space (FTCS) differencing scheme. In this and subsequent figures, the open circle is the new point at which the solution is desired; filled circles are known points whose function values are used in calculating the new point; the solid lines connect points that are used to calculate spatial derivatives; the dashed lines connect points that are used to calculate time derivatives. The FTCS scheme is generally unstable for hyperbolic problems and cannot usually be used.

quantities at timestep n+1 in terms of only quantities known at timestep n. For the space derivative, we can use a second-order representation still using only quantities known at timestep n:

$$\frac{\partial u}{\partial x}\Big|_{j,n} = \frac{u_{j+1}^n - u_{j-1}^n}{2\Delta x} + O(\Delta x^2)$$
 (19.1.10)

The resulting finite-difference approximation to equation (19.1.6) is called the FTCS representation (Forward Time Centered Space),

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} = -v \left(\frac{u_{j+1}^n - u_{j-1}^n}{2\Delta x} \right)$$
 (19.1.11)

which can easily be rearranged to be a formula for u_j^{n+1} in terms of the other quantities. The FTCS scheme is illustrated in Figure 19.1.1. It's a fine example of an algorithm that is easy to derive, takes little storage, and executes quickly. Too bad it doesn't work! (See below.)

The FTCS representation is an *explicit* scheme. This means that u_j^{n+1} for each j can be calculated explicitly from the quantities that are already known. Later we shall meet *implicit* schemes, which require us to solve implicit equations coupling the u_j^{n+1} for various j. (Explicit and implicit methods for ordinary differential equations were discussed in §16.6.) The FTCS algorithm is also an example of a *single-level* scheme, since only values at time level n have to be stored to find values at time level n+1.

von Neumann Stability Analysis

Unfortunately, equation (19.1.11) is of very limited usefulness. It is an *unstable* method, which can be used only (if at all) to study waves for a short fraction of one oscillation period. To find alternative methods with more general applicability, we must introduce the *von Neumann stability analysis*.

The von Neumann analysis is local: We imagine that the coefficients of the difference equations are so slowly varying as to be considered constant in space and time. In that case, the independent solutions, or *eigenmodes*, of the difference equations are all of the form

$$u_j^n = \xi^n e^{ikj\Delta x} \tag{19.1.12}$$

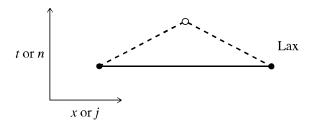


Figure 19.1.2. Representation of the Lax differencing scheme, as in the previous figure. The stability criterion for this scheme is the Courant condition.

where k is a real spatial wave number (which can have any value) and $\xi = \xi(k)$ is a complex number that depends on k. The key fact is that the time dependence of a single eigenmode is nothing more than successive integer powers of the complex number ξ . Therefore, the difference equations are unstable (have exponentially growing modes) if $|\xi(k)| > 1$ for *some* k. The number ξ is called the *amplification factor* at a given wave number k.

To find $\xi(k)$, we simply substitute (19.1.12) back into (19.1.11). Dividing by ξ^n , we get

$$\xi(k) = 1 - i\frac{v\Delta t}{\Delta x}\sin k\Delta x \tag{19.1.13}$$

whose modulus is > 1 for all k; so the FTCS scheme is unconditionally unstable.

If the velocity v were a function of t and x, then we would write v_j^n in equation (19.1.11). In the von Neumann stability analysis we would still treat v as a constant, the idea being that for v slowly varying the analysis is local. In fact, even in the case of strictly constant v, the von Neumann analysis does not rigorously treat the end effects at j=0 and j=N.

More generally, if the equation's right-hand side were nonlinear in u, then a von Neumann analysis would linearize by writing $u=u_0+\delta u$, expanding to linear order in δu . Assuming that the u_0 quantities already satisfy the difference equation exactly, the analysis would look for an unstable eigenmode of δu .

Despite its lack of rigor, the von Neumann method generally gives valid answers and is much easier to apply than more careful methods. We accordingly adopt it exclusively. (See, for example, [1] for a discussion of other methods of stability analysis.)

Lax Method

The instability in the FTCS method can be cured by a simple change due to Lax. One replaces the term u_i^n in the time derivative term by its average (Figure 19.1.2):

$$u_j^n \to \frac{1}{2} \left(u_{j+1}^n + u_{j-1}^n \right)$$
 (19.1.14)

This turns (19.1.11) into

$$u_j^{n+1} = \frac{1}{2} \left(u_{j+1}^n + u_{j-1}^n \right) - \frac{v\Delta t}{2\Delta x} \left(u_{j+1}^n - u_{j-1}^n \right)$$
 (19.1.15)