
Von Neumann Stability Analysis

In Exercise 6.1 we saw that our simple explicit FTCS differencing of the advection equation is
unstable. Why should that be? A simple but powerful analytical tool developed by computational
physicist John von Neumann in the 1950s tells us why.

The basic differencing scheme is

un+1
j = unj − α

(
unj+1 − unj−1

)
, (1)

where α = v∆t/2∆x. This is a linear transformation from the old state of the system un to
the new state un+1, where the vector u = (u0, u1, . . . , uJ−1). As with any linear operator, the
eigenvectors of the system are of great interest, so let’s first decompose the field u on the grid into
Fourier components eikx, and then look at the behavior of each component under the transformation
described in Equation 1. [The continuum version of this basic approach is the starting point for
almost all stability analyses of linear systems in physics.]

In our discretization scheme, xj = x0 + j∆x so, ignoring a phase factor, a pure Fourier mode
with wavenumber k = 2π/λ has eikxj = eikj∆x on the grid points. Since k is unchanged by a linear
transformation, we expect that after a single application of the differencing scheme, this mode will
simply be modified in amplitude and phase:

eikj∆x → ξ(k)eikj∆x.

Here, ξ(k) is the (complex) amplification factor for a mode of wavenumber k. If |ξ| > 1 the mode
grows in amplitude with each iteration and the method is unstable. If any mode has |ξ| > 1, the
system is unstable—some component with that particular k will eventually explode. Each time
step corresponds to one application of the transformation, so if the initial state looks like eikxj

u0
j = eikj∆x,

the n-th state has
unj = ξ(k)n eikj∆x.

Note by the way that the superscript n on u means the n-th time step, while on ξ it means a power.
Sorry—we’re following Numerical Recipes in this development...

Substituting this expression for unj into Equation 1 allows us to determine which modes are
stable. We find

ξn+1 eikj∆x = ξn eikj∆x − α
(
ξn eik(j+1)∆x − ξn eik(j−1)∆x

)
.

Dividing through by ξn eikj∆x, this simplifies to

ξ(k) = 1− α
(
eik∆x − e−ik∆x

)
= 1− 2iα sin k∆x. (2)

Thus, |ξ(k)| > 1 for all k, as observed!

It is also worth noting that the above expression for ξ(k) also tells us which modes are expected
to go unstable first as α increases. Clearly the first mode to reach ξ = −1 will be the one for which
sin 1

2k∆x = 1, or k∆x = π. This corresponds to a wavelength λ = 2π/k = 2∆x, i.e. the grid scale,
again as observed.

The von Neumann stability analysis is a very important technique that gives us important
analytical insight into the behavior of numerical integration schemes — even if they are not linear.


