Von Neumann Stability Analysis

In Exercise 6.1 we saw that our simple explicit FTCS differencing of the advection equation is
unstable. Why should that be? A simple but powerful analytical tool developed by computational
physicist John von Neumann in the 1950s tells us why.

The basic differencing scheme is

W=l — o (uy — ) (1)
where o = vAt/2Az. This is a linear transformation from the old state of the system u” to
the new state u"*!, where the vector u = (ug,u1,...,us_1). As with any linear operator, the
eigenvectors of the system are of great interest, so let’s first decompose the field u on the grid into
Fourier components e?**, and then look at the behavior of each component under the transformation
described in Equation 1. [The continuum version of this basic approach is the starting point for
almost all stability analyses of linear systems in physics.]

In our discretization scheme, x; = xg + jAz so, ignoring a phase factor, a pure Fourier mode
with wavenumber k = 27 /) has %% = ¢*2% on the grid points. Since k is unchanged by a linear
transformation, we expect that after a single application of the differencing scheme, this mode will
simply be modified in amplitude and phase:
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Here, (k) is the (complex) amplification factor for a mode of wavenumber k. If |{| > 1 the mode
grows in amplitude with each iteration and the method is unstable. If any mode has |¢| > 1, the
system is unstable—some component with that particular k will eventually explode. Each time
step corresponds to one application of the transformation, so if the initial state looks like e**%i
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the n-th state has

U,? — f(l{?)n eiijx.

Note by the way that the superscript n on v means the n-th time step, while on £ it means a power.
Sorry—we’re following Numerical Recipes in this development...

Substituting this expression for u} into Equation 1 allows us to determine which modes are

stable. We find
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Dividing through by £” €747 this simplifies to

(k) = 1—a (eikAz _ e—ikm)
= 1—2iasinkAxz. (2)

Thus, [£(k)| > 1 for all k, as observed!

It is also worth noting that the above expression for (k) also tells us which modes are expected
to go unstable first as « increases. Clearly the first mode to reach £ = —1 will be the one for which
sin %kAa: =1, or kAz = m. This corresponds to a wavelength A = 27/k = 2Ax, i.e. the grid scale,
again as observed.

The von Neumann stability analysis is a very important technique that gives us important
analytical insight into the behavior of numerical integration schemes — even if they are not linear.



