Von Neumann Stability Analysis

In Exercise 6.1 we saw that our simple explicit FTCS differencing of the advection equation is unstable. Why should that be? A simple but powerful analytical tool developed by computational physicist John von Neumann in the 1950s tells us why.

The basic differencing scheme is

$$u_{j}^{n+1} = u_{j}^{n} - \alpha \left(u_{j+1}^{n} - u_{j-1}^{n} \right) , \qquad (1)$$

where $\alpha = v \Delta t/2\Delta x$. This is a *linear* transformation from the old state of the system \mathbf{u}^n to the new state \mathbf{u}^{n+1} , where the vector $\mathbf{u} = (u_0, u_1, \dots, u_{J-1})$. As with any linear operator, the eigenvectors of the system are of great interest, so let's first decompose the field \mathbf{u} on the grid into Fourier components e^{ikx} , and then look at the behavior of each component under the transformation described in Equation 1. [The continuum version of this basic approach is the starting point for almost all stability analyses of linear systems in physics.]

In our discretization scheme, $x_j = x_0 + j\Delta x$ so, ignoring a phase factor, a pure Fourier mode with wavenumber $k = 2\pi/\lambda$ has $e^{ikx_j} = e^{ikj\Delta x}$ on the grid points. Since k is unchanged by a linear transformation, we expect that after a single application of the differencing scheme, this mode will simply be modified in amplitude and phase:

$$e^{ikj\Delta x} \rightarrow \xi(k)e^{ikj\Delta x}$$
.

Here, $\xi(k)$ is the (complex) amplification factor for a mode of wavenumber k. If $|\xi| > 1$ the mode grows in amplitude with each iteration and the method is unstable. If any mode has $|\xi| > 1$, the system is unstable—some component with that particular k will eventually explode. Each time step corresponds to one application of the transformation, so if the initial state looks like e^{ikx_j}

$$u_j^0 = e^{ikj\Delta x},$$

the n-th state has

$$u_j^n = \xi(k)^n \, e^{ikj\Delta x}.$$

Note by the way that the superscript n on u means the n-th time step, while on ξ it means a power. Sorry—we're following Numerical Recipes in this development...

Substituting this expression for u_j^n into Equation 1 allows us to determine which modes are stable. We find

$$\xi^{n+1} e^{ikj\Delta x} = \xi^n e^{ikj\Delta x} - \alpha \left(\xi^n e^{ik(j+1)\Delta x} - \xi^n e^{ik(j-1)\Delta x}\right).$$

Dividing through by $\xi^n e^{ikj\Delta x}$, this simplifies to

$$\xi(k) = 1 - \alpha \left(e^{ik\Delta x} - e^{-ik\Delta x} \right)$$

= 1 - 2i\alpha \sin k\Delta x. (2)

Thus, $|\xi(k)| > 1$ for <u>all</u> k, as observed!

It is also worth noting that the above expression for $\xi(k)$ also tells us *which* modes are expected to go unstable first as α increases. Clearly the first mode to reach $\xi = -1$ will be the one for which $\sin \frac{1}{2}k\Delta x = 1$, or $k\Delta x = \pi$. This corresponds to a wavelength $\lambda = 2\pi/k = 2\Delta x$, i.e. the grid scale, again as observed.

The von Neumann stability analysis is a very important technique that gives us important analytical insight into the behavior of numerical integration schemes — even if they are not linear.