Random walks and diffusion

A random walk $\{x^n\}$ is the sum of a series of random steps:

$$x_n = \sum_{i=0}^{n-1} \delta x_i;$$

where the steps δx_i are uncorrelated and drawn from the same probability distribution, independent of *i*.

Let's regard the number of steps n as a time variable, with $t_n = n\Delta t$. Then, again considering an ensemble of many walkers, we can define $N_i(t)$ as the number of walkers currently in state i, and the probability that a walker moves from state i to state $i \pm 1$ in time Δt is $R_{\pm}\Delta t$. Then the change in N_i is the number of walkers moving into that state minus the number of walkers moving out:

$$N_i(t + \Delta t) = N_i(t) - R_- \Delta t N_i(t) - R_+ \Delta t N_i(t) + R_+ \Delta t N_{i-1}(t) + R_- \Delta t N_{i+1}(t).$$

Rearranging and setting $R_{\pm} = R$, this implies

$$\frac{N_i(t + \Delta t) - N_i(t)}{\Delta t} = R \left[N_{i+1}(t) - 2N_i(t) + N_{i-1}(t) \right]$$
$$= R \Delta x^2 \frac{N_{i+1}(t) - 2N_i(t) + N_{i-1}(t)}{\Delta x^2},$$

which we recognize as the FTCS differenced form of the diffusion equation

$$\frac{\partial N}{\partial t} = D \frac{\partial^2 N}{\partial x^2}$$

where we can now identify the diffusion coefficient as

$$D = R\Delta x^2.$$