Maxwell's equations:

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$$
$$\nabla \cdot \mathbf{B} = 0$$
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$
$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \varepsilon_0 \mu_0 \frac{\partial \mathbf{E}}{\partial t}$$

Setting $\rho = 0$, $\mathbf{J} = 0$:

$$\nabla \cdot \mathbf{E} = 0$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{B} = \varepsilon_0 \mu_0 \frac{\partial \mathbf{E}}{\partial t}$$

Take the curl of the third equation

$$\nabla \times (\nabla \times \mathbf{E}) = \nabla \times \left(-\frac{\partial \mathbf{B}}{\partial t}\right)$$
$$\nabla (\nabla \cdot \mathbf{E}) - \nabla^2 \mathbf{E} = -\frac{\partial}{\partial t} \nabla \times \mathbf{B}$$
$$\nabla^2 \mathbf{E} = \varepsilon_0 \mu_0 \frac{\partial^2 \mathbf{E}}{\partial t^2}$$
$$= \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2}$$

Wave equation in 1D:

$$\frac{\partial^2 u}{\partial x^2} - \frac{1}{v^2} \frac{\partial^2 u}{\partial t^2} = 0.$$

Advection equation in 1D:

$$\frac{\partial u}{\partial x} + \frac{1}{v} \frac{\partial u}{\partial t} = 0.$$