
PHYS 325: Computational Physics III

Winter 2023

Homework #4

(Due: February 24, 2023)

1. Write a program to find the numerical solution u(x, t) of the 1-dimensional advection equation
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for −10 ≤ x ≤ 10, subject to the initial condition

u(x, 0) = e−2(x−2)2

using the Lax-Wendroff method:
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where α = v∆t/∆x. Perform the calculation with v = 1 on a grid of 501 points spanning the
range −10 ≤ x ≤ 10 (so ∆x = 0.04), with time step ∆t = ∆x, and take v = 1.

(a) How does your numerical solution compare with the analytical solution at times t = 1, 2, 5,
and 10? Plot the numerical and analytical solutions at each time on the same graph. Finally,
plot the maximum absolute difference between the numerical and analytic solutions as a
function of time for 0 ≤ t ≤ 10.

(b) Repeat part (a) with a time step of 0.5∆x.

2. As discussed in class, the 1-dimensional wave equation
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can be recast in a form similar to the advection equation by setting
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(a) Derive (or look up in Numerical Recipes) the form of the Lax scheme for this problem,
and write down the rule for advancing the system from time n to time n+ 1.



(b) Hence write a program to solve the wave equation on the same grid as in question 1, with
initial conditions

u(x, 0) = sin(πx) − 1 ≤ x ≤ 1
u(x, 0) = 0 otherwise

∂u/∂t = 0 for all x

Choose c = 1 and ∆t = ∆x, and plot the numerical and analytical solutions for r and u at
time t = 5 on the same graph. Turn in both your program and the resulting graph.

3. Write a program to solve the two-dimensional version of problem 1 using the Lax scheme, to
determine the solution u(x, y, t) of the equation

∂u

∂t
+ (v · ∇)u = 0 ,

where v = (vx, vy) is a constant flow vector. Work on a square 201 × 201 grid in x and
y with −10 ≤ x, y ≤ 10 and ∆x = ∆y = ∆ = 0.1. Take u(x, y, 0) = sinπr′ for r′ < 2
and 0 otherwise, where r′ =

√
(x+ 3)2 + y2, and let vx = 1
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3, vy = 0.5. Use a time step

∆t = ∆/
√
2. Turn in images of the u(x, y) field at times t = 0, 1, 2, 5 and 10. What happens

if you set ∆t = ∆, as in the 1-D case?


