
Fully Implicit Differencing

In Exercise 9.1 you should have found that the simple explicit integration scheme you used was
unstable unless you chose a very small time step. This is quite typical of initial-value solvers for
partial differential equations: they can be fast, but are prone to instability.

By applying the von Neumann stability analysis and looking for the fastest growing unstable
modes, we found that the scheme is unstable unless

α =
D∆t

∆x2
≤ 1

2 .

In other words, the time step must satisfy

∆t ≤ ∆x2

2D
.

Check for yourself that the scheme you programmed is in fact stable when this condition is met.
This limit on the time step represents quite a severe restriction, especially when you realize that

you generally want to reduce ∆x in order to improve spatial resolution, but each reduction of ∆x
by a factor of 2 reduces ∆t by a factor of 4 and hence the speed of the code by a factor of 8.

The way to deal with this sort of problem in the case of ordinary differential equations is to use
implicit differencing. In the Euler method, for example, the explicit scheme for solving the equation

dy

dx
= f(x, y)

simply sets
yn+1 = yn + ∆xf(xn, yn) ,

and also is prone to instability. However, the implicit form,

yn+1 = yn + ∆xf(xn+1, yn+1) ,

while harder to solve, is unconditionally stable. Generally, the latter scheme is very good at
picking out the long-term solution and ignoring problematic short-term fluctuations, although it
may introduce unacceptable inaccuracy into the solution.

Similar ideas apply to the diffusion equation. The explicit form

un+1
j = unj + α(unj+1 − 2unj + unj−1) ,

is prone to instability unless the time step is made inconveniently small. The fully implicit version
of the differencing scheme is

un+1
j = unj + α(un+1

j+1 − 2un+1
j + un+1

j−1 ) ,

i.e. all the superscripts in the “∇2” term are now n+ 1. Application of the von Neumann analysis
to this system yields the following result for the amplification factor, ξ(k):

ξ(1 + 4α sin2 1
2k∆x) = 1,

that is,
ξ = (1 + 4α sin2 1

2k∆x)−1.



(Compare Equation 2 in the von Neumann analysis of this problem.) Note that in this case |ξ| < 1
always, so the method is unconditionally stable.

To implement the method, rewrite it as

−αun+1
j+1 + (1 + 2α)un+1

j − αun+1
j−1 = unj .

If we regard the unj as known quantities and the un+1
j as an unknown vector of length J , then we

can view the above rule as a matrix equation. setting xj = un+1
j and denoting the right-hand side

of the equation (unj ) by rj , we can write
Ax = r ,

where the J × J matrix A is tridiagonal (connecting j with j ± 1) and has the form

A =



? ? 0 0 0 · · · 0 0 0
−α 1 + 2α −α 0 0 · · · 0 0 0

0 −α 1 + 2α −α 0 · · · 0 0 0
. . . . . . . .
. . . . . . . .
. . . . . . . .
0 0 0 0 0 · · · −α 1 + 2α −α
0 0 0 0 0 · · · 0 ? ?


.

As before, the above equation refers only to the interior points of the grid, so the top and bottom
rows of the matrix are as yet undefined.

Such tridiagonal systems are easily solved. It is conventional to represent the nonzero elements
of the matrix as three vectors: b is the diagonal, a and c are the off-diagonal elements, i.e.

A =



b0 c0 0 0 0 · · · 0 0 0
a1 b1 c1 0 0 · · · 0 0 0
0 a2 b2 c2 0 · · · 0 0 0
. . . . . . . .
. . . . . . . .
. . . . . . . .
0 0 0 0 0 · · · aJ−2 bJ−2 cJ−2

0 0 0 0 0 · · · 0 aJ−1 bJ−1


.

Hence, for 1 ≤ j ≤ J − 2, we have aj = cj = −α, bj = 1 + 2α, and rj = unj . Note that a0 and cJ−1

are not used. We use the first (b0, c0, and r0) and last (aJ−1, bJ−1, and rJ−1) rows of the matrix
equation to apply the boundary conditions of the problem. For example, to set x0 = 0, we could
choose b0 = 1, c0 = 0, r0 = 0. To set xJ−2 = xJ−1, we would set aJ−1 = −1, bJ−1 = 1, rJ−1 = 0,
and so on. In this case the vectors are particularly simple, as their elements are constant.

We can now rewrite our previous integrator to use the fully implicit scheme — Exercise 9.2.
Each step now entails solving a matrix equation, but apart from that the logic of the program is
unchanged.


