Computation of Electric Field Lines II

Some Practical Considerations

Our program will proceed as follows.

1. For each charge q_i in the system, compute the field lines starting on a small circle centered on that charge. The radius of the circle is most conveniently set by requiring that the magnitude of the potential due to q_i on the circle have some standard value $\phi_0 > 0$. The starting points for the field lines around charge *i* are thus defined by

$$X_j = x_i + r \cos \theta_j,$$

$$Y_j = y_i + r \sin \theta_j, \quad \text{for } j = 1, \dots, n_{\theta}$$

where $r = k|q_i|/\phi_0$ and $\theta_j = 2j\pi/n_\theta$. In practice, choosing $n_\theta = 8$ or 16 will give a sufficient number of field lines. In order to avoid the termination condition preventing the calculation from even starting, it is advisable to start with r a little bigger than the above value $r = 1.1k|q_i|/\phi_0$, say.

If we choose standard units such that the "typical" value of X is 1 unit (i.e. 1 meter) and typical charges are 1 μC , taking $\phi_0 = 10^6$ V gives reasonable results.

2. Field lines are computed by choosing a step size δs and taking a step. For the standard units just described, it is sufficient to take $\delta s = 0.01$ (1 centimeter) in most cases. However, close to a charge, where the field is varying rapidly, it is desirable to take shorter steps. We do this by placing a limit $\delta \phi_{\text{max}}$ on the change in potential over the distance δs . Since $|\delta \phi| \approx |\mathbf{E}| \delta s$, this requires $\delta s < \delta \phi_{\text{max}}/|\mathbf{E}|$. Our choice of δs is thus

$$\delta s = \min(0.01, \, \delta \phi_{\max} / |\mathbf{E}|) \, .$$

As a practical matter, in standard units, we take $\delta \phi_{\text{max}} = 10^2 \text{ V}$.

3. Finally, we must specify the circumstances under which we stop the computation of the field line and move on to the next. The simplest criteria are that we stop if $|\mathbf{X}| \equiv \sqrt{X^2 + Y^2} > R_{\text{max}}$ (field line too far from the origin) or if $|\phi(\mathbf{X})| < \phi_0$ (too close to another charge). We take $R_{\text{max}} = 50$.

In constructing this program, you will find it helpful to write, in turn, functions to

- 1. initialize the charges and their positions
- 2. compute the potential at any point due to the charges
- 3. compute the electric field at any point due to the charges
- 4. determine the field line starting at some specified point
- 5. loop over all starting points around each positive charge and compute the field line through each.