
Computation of Electric Field Lines I

Field Lines and Equipotentials

For definiteness and simplicity, let’s begin our study by computing the electric field lines due to a
group of stationary point charges. Let the nq charges be qi (i = 1, . . . , nq), with positions xi. Again
for simplicity and ease of visualization, we will work in two dimensions, writing xi = (xi, yi). The
electric potential at some arbitrary point x = (x, y) is then

φ(x) =

nq∑
i=1

kqi
|x− xi|

,

where |x− xi| =
√

(x− xi)2 + (y − yi)2 and k = 9.0× 109 in SI units. The electric field is

E(x) = −∇φ(x) =

nq∑
i=1

kqi(x− xi)

|x− xi|3
.

A field line is defined as a curve that is everywhere tangent to the local electric field vector.
Mathematically, if we denote this curve by X(s), where s is distance along the field line, the above
definition means that the tangent vector dX/ds must be equal to the unit vector in the direction
of E, i.e.

dX

ds
= Ê ≡ E

|E|
.

This definition will translate directly into the numerical method for computing the field line.
An equipotential is a surface (curve in 2-D) on which the electric potential φ is constant. It is

easy to show that field lines are always perpendicular to equipotential surfaces, as follows. Suppose
X and X + δX lie on the same equipotential, so the vector δX is tangent to the surface. The
potential difference between the two points is δφ = −E.δX (by definition of E) = 0 (since the
points are at the same potential). Therefore δX is orthogonal to E. Hence, instead of

dX

ds
=

(
Ex

|E|
,
Ey

|E|

)
as above, we now integrate

dX

ds
=

(
−Ey

|E|
,
Ex

|E|

)
.

Think of the equipotentials and field lines as forming an orthogonal “coordinate system” of
sorts spanning the space containing the charges. Note that we could in principle use φ instead of s
as the parameter describing position along a field line, as φ decreases monotonically along the line.
In fact, we will find that a combination of the two is most convenient.

Operational Definition of a Field Line

The procedure for computing a field line is very straightforward, and (apart from the fact that δs
is length along the curve instead of a separate variable) is essentially the Euler method for solving
ordinary differential equations. Indeed, we can improve the accuracy of the method by going to

higher orders, as with the Runge-Kutta or predictor–corrector ODE solvers, as outlined below.
Given a point X on some field line, we take a step of length δs in the direction of the field:

X −→ X + δX = X + δs

(
E

|E|

)
.

In the limit δs→ 0, the new point will lie on the field line, according to the above differential equa-
tion. In practice, we choose δs as small as is practical, and regard the result as an approximation
to the desired line.

The simplest higher-order generalization of this method is, as usual, to try to use the direction
of the field in the middle of the step to define δX, instead of the field at the start. A straightforward
way to do this is as follows. First let

X′ = X + δs

(
E

|E|

)
,

just as before. Then take a step using an estimate of the field at the mid-point:

X −→ X + δX = X + δs

(
Eav

|Eav|

)
,

where Eav = 1
2 [E(X) + E(X′)]. The similarities to the second-order schemes mentioned earlier

should be obvious.
Given this procedure for computing the field line through a given point, mapping out the field

line structure of our distribution of charges is easy. We know that field lines start on positive
charges and either end on a negative charge or extend to infinity so, starting near each charge,
we simply repeat the above step—moving parallel to the field away from a positive charge, and
opposite to the field for a negative charge—until we reach another charge or the field line exceeds
some specified distance from the origin.

The scripts field line loop.py and field line loop 2.py present basic functions to draw
a field line starting from a given point. They can step either forward or backward, depending on
the parameter direction, and stop whenever either of the two termination criteria just mentioned
are satisfied. The first script isn’t much use, as it doesn’t actually return any information—it just
illustrates the algorithm. The second version returns two lists containing the x- and y-coordinates
of the field line.

