
Variational Methods and Fermat’s Principle

We are accustomed in Physics class to seeing the laws of Physics stated in terms of forces, fields,
and differential equations. As we have seen, such a formulation of a problem can provide a powerful
means of obtaining the solution.

However, all of the familiar equations of elementary physics–Newton’s laws, Hamilton’s equa-
tions, Maxwell’s equations, and Schrödinger’s, to name a few—can equivalently be expressed in
variational form—that is, as a statement that the state of the system (or the trajectory of a parti-
cle) is the one that minimizes some global property, usually expressed as an integral. For example,

• Hamilton’s principle states that the motion x(t) of a particle from time t1 to time t2 is the
one that minimizes the action

∫ t2
t1
Ldt, where L = T − V is the Lagrangian of the system.

It is easily shown that this principle is equivalent to the Lagrangian formulation of classical
mechanics.

• The quantum-mechanical wave function ψ of a system with Hamiltonian H is the one that
minimizes the quantity 〈ψ|Hψ〉 =

∫
dxψ∗Hψ subject to the constraint that 〈ψ|ψ〉 is constant.

This is equivalent to Schrödinger’s equation.

There are many more examples. Often, a variational formulation is the most convenient or direct
way of expressing the problem. The calculus of variations was developed precisely to handle such
problems. Here we will adopt a Monte-Carlo approach to their solution. We will focus on two
examples: Fermat’s principle (described below) and energy minimization (next). In each case, we
are seeking the configuration of a system that minimizes some integral property of the system.

Fermat’s principle has to do with the path taken by a ray of light through a (possibly inhomo-
geneous) medium. It states that the path from point A to point B is the one that minimizes the
light travel time between those two points. In the case of a homogeneous medium, that translates
into the shortest distance between the two points—a straight line—but in general it means that, if
the refractive index of the medium is n(x, y) (in two dimensions, for simplicity) then the path y(x)
taken by the ray is the one that minimizes
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where ds2 = dx2 + dy2. You may have seen this prolem solved analytically as an introductory
example in variational calculus.



In the Monte-Carlo approach to this problem, we represent the path y(x) as a series of N + 1
discrete points (xi, yi), and choose a set of xi values uniformly between x0 = xA and xN = xB
(it is not actually necessary to choose the xi uniformly, as we will see later). We then choose the
corresponding yi randomly, except that y0 = yA and yN = yB. The procedure is simple:

1. Evaluate the quantity t for the current configuration, as

t =
N−1∑
i=0

n(xi, yi)
√
dx2i + dy2i

where dxi = xi+1 − xi and similarly for dyi.

2. Randomly choose one of the interior points i, with 1 ≤ i < N .

3. Randomly change yi by some amount in the range [−dy, dy], where dy is some characteristic
resolution scale of the problem.

4. Re-evaluate the quantity t. If the random change has reduced it from the previous value,
accept the change. Otherwise, reject it and restore the previous value of yi.

5. Go back to step (1), and repeat until some large number of trials fails to reduce t.

The procedure will work for and choice of n(x, y) and any initial choice of yi—and, in fact for any
problem that can be cast in variational form!


