PHYS 306: Computational Physics Lab (E&M)

Winter 2023

Exercise 5.1

1. Write a program to compute the retarded time $t_{\rm ret}({\bf r},t)$ for the field at position ${\bf r}$ and time tdue to a moving particle with position $\mathbf{R}(t)$. The retarded time is defined implicitly by

$$t_{\text{ret}} = t - |\mathbf{r} - \mathbf{R}(t_{\text{ret}})|/c$$
.

Use bisection with an initial bracketing range [t-2r/c, t], where $r=|\mathbf{r}|$, and plot t_{ret} at $\mathbf{r} = (5, 5)$ as a function of t for 0 < t < 20, assuming

(a)
$$\mathbf{R}(t) = (\alpha e^t, 0)$$
 $(t < 0)$
(b) $\mathbf{R}(t) = (\alpha \cos t, \alpha \sin t)$ $(t \ge 0)$

(b)
$$\mathbf{R}(t) = (\alpha \cos t, \alpha \sin t) \quad (t \ge 0)$$

where we will take $\alpha = 0.5$ and c = 1.

Operationally, we will determine t_{ret} as the solution to the equation g(z) = 0, where

$$g(z) = z - t - |\mathbf{r} - \mathbf{R}(z)|/c.$$