
The Crank-Nicolson Scheme

The fully implicit scheme is unconditionally stable, but it tends to oversuppress short-length-scale
fluctuations. It turns out that an even better approach is to take the “average” of the explicit and
implicit schemes—a so-called semi-implicit scheme, also called the Crank-Nicolson scheme:
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This method is widely used because it is unconditionally stable but does not damp the essential
features in the solution. Applying the von Neumann stability analysis, we find that
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from which it is easily seen that |ξ| < 1 always, so the method is unconditionally stable. Further-
more, for the scales of greatest interest — comparable to the scale of the grid — we have k∆x� 1
and

ξ ≈ 1− α(k∆x)2 ≈ 1,

so damping is minimal. We will also see that the Crank-Nicolson scheme preserves unitarity in the
Schrödinger-equation version, making it particularly useful for quantum-mechanical applications.

As with the fully implicit method, the above equation is a tridiagonal matrix system
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We solve it just as described previously for the fully implicit method. The only differences are the
details of the matrix A and the form of r. Thus, during each step, the new uj array is the solution
xj of the matrix equation
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where as usual the top and bottom rows are used to apply the boundary conditions on u and, for
1 ≤ j ≤ J − 2, we have aj = cj = −1
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