The Crank-Nicolson Scheme

The [fully implicit scheme|is unconditionally stable, but it tends to oversuppress short-length-scale
fluctuations. It turns out that an even better approach is to take the “average” of the explicit and
implicit schemes—a so-called semi-implicit scheme, also called the Crank-Nicolson scheme:
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or, rearranging,

_Lountt ntl 1. ntl 1, .1 — LI P
saui s + (14 a)uj sau; ) = saul g + (1 —a)uj + 5au] ;.

This method is widely used because it is unconditionally stable but does not damp the essential
features in the solution. Applying the [von Neumann stability analysis| we find that
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from which it is easily seen that |{| < 1 always, so the method is unconditionally stable. Further-
more, for the scales of greatest interest — comparable to the scale of the grid — we have kAzr < 1
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so damping is minimal. We will also see that the Crank-Nicolson scheme preserves unitarity in the
Schrédinger-equation version, making it particularly useful for quantum-mechanical applications.
As with the [fully implicit method], the above equation is a tridiagonal matrix system
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where (apart from the first and last elements) z; = u}”’l, rj = %au? 11— auj + %auy_l, and
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We solve it just [as described previously] for the [fully implicit methodl The only differences are the
details of the matrix A and the form of r. Thus, during each step, the new u; array is the solution
x; of the matrix equation
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where as usual the top and bottom rows are used to apply the boundary conditions on u and, for
n

1<j<J—2, wehaveaj =c¢; = —%a, bj=1+a«,and r; = %au}ﬁrl + (1 —a)uf + %auj_l.



