278 Chapter 7. Random Numbers

Portable Random Number Generators

Park and Miller [1] have surveyed a large number of random number generators
that have been used over the last 30 years or more. Along with a good theoretical
review, they present an anecdotal sampling of a number of inadequate generators that
have come into widespread use. The historical record is nothing if not appalling.

There is good evidence, both theoretical and empirical, that the simple multi-
plicative congruential algorithm

Iity =al; (modm) (7.1.2)

can be as good as any of the more general linear congruential generators that have
¢ # 0 (equation 7.1.1) — if the multiplier a and modulus m are chosen exquisitely
carefully. Park and Miller propose a “Minimal Standard” generator based on the
choices

a="7=16807 m =23 — 1 =2147483647 (7.1.3)

First proposed by Lewis, Goodman, and Miller in 1969, this generator has in
subsequent years passed all new theoretical tests, and (perhaps more importantly)
has accumulated a large amount of successful use. Park and Miller do not claim that
the generator is “perfect” (we will see below that it is not), but only that it is a good
minimal standard against which other generators should be judged.

It is not possible to implement equations (7.1.2) and (7.1.3) directly in a
high-level language, since the product of @ and m — 1 exceeds the maximum value
for a 32-bit integer. Assembly language implementation using a 64-bit product
register is straightforward, but not portable from machine to machine. A trick
due to Schrage [2,3] for multiplying two 32-bit integers modulo a 32-bit constant,
without using any intermediates larger than 32 bits (including a sign bit) is therefore
extremely interesting: It allows the Minimal Standard generator to be implemented
in essentially any programming language on essentially any machine.

Schrage’s algorithm is based on an approximate factorization of m,

m=aq+r, ie, q=[m/a], r=mmoda (7.1.4)

with square brackets denoting integer part. If r is small, specifically r < ¢, and
0 < z < m — 1, it can be shown that both a(z mod ¢) and r[z/¢] lie in the range
0,...,m — 1, and that

a(z mod q) — r[z/q] ifitis > 0,

a(z mod ¢q) — r[z/q] +m otherwise (7.15)

az mod m = {

The application of Schrage’s algorithm to the constants (7.1.3) uses the values
q = 127773 and r = 2836.
Here is an implementation of the Minimal Standard generator:



7.1 Uniform Deviates 279

#define IA 16807
#define IM 2147483647
#define AM (1.0/IM)
#define IQ 127773
#define IR 2836
#define MASK 123459876

float ranO(long *idum)

“Minimal” random number generator of Park and Miller. Returns a uniform random deviate
between 0.0 and 1.0. Set or reset idum to any integer value (except the unlikely value MASK)
to initialize the sequence; idum must not be altered between calls for successive deviates in
a sequence.

{
long k;
float ans;
*idum ~= MASK; XORing with MASK allows use of zero and other
k=(*idum)/IQ; simple bit patterns for idum.
*idum=IA* (*idum-k*IQ)-IR*k; Compute idum=(IA*idum) % IM without over-
if (*idum < 0) *idum += IM; flows by Schrage's method.
ans=AM* (*idum) ; Convert idum to a floating result.
*idum ~= MASK; Unmask before return.
return ans;
}

The period of ran0 is 23! — 2 ~ 2.1 x 10%. A peculiarity of generators of
the form (7.1.2) is that the value 0 must never be allowed as the initial seed — it
perpetuates itself — and it never occurs for any nonzero initial seed. Experience
has shown that users always manage to call random number generators with the seed
idum=0. That is why ran0O performs its exclusive-or with an arbitrary constant both
on entry and exit. If you are the first user in history to be proof against human error,
you can remove the two lines with the A operation.

Park and Miller discuss two other multipliers a that can be used with the same
m = 231 — 1. These are a = 48271 (with ¢ = 44488 and r = 3399) and a = 69621
(with ¢ = 30845 and r = 23902). These can be substituted in the routine ran0
if desired; they may be slightly superior to Lewis ef al.’s longer-tested values. No
values other than these should be used.

The routine ranO is a Minimal Standard, satisfactory for the majority of
applications, but we do not recommend it as the final word on random number
generators. Our reason is precisely the simplicity of the Minimal Standard. It is
not hard to think of situations where successive random numbers might be used
in a way that accidentally conflicts with the generation algorithm. For example,
since successive numbers differ by a multiple of only 1.6 x 10% out of a modulus of
more than 2 x 10°, very small random numbers will tend to be followed by smaller
than average values. One time in 10°, for example, there will be a value < 10~°
returned (as there should be), but this will always be followed by a value less than
about 0.0168. One can easily think of applications involving rare events where this
property would lead to wrong results.

There are other, more subtle, serial correlations present in ranO. For example,
if successive points (I;,I;11) are binned into a two-dimensional plane for i =
1,2,..., N, then the resulting distribution fails the x? test when N is greater than a
few x 107, much less than the period m — 2. Since low-order serial correlations have
historically been such a bugaboo, and since there is a very simple way to remove



