
The Numerov Method

The Numerov method is applicable to linear ordinary differential equations (such as the Schrödinger
equation) that do not contain a y′ term. A fairly general form of such an equation is

y′′ + g(x)y = s(x), a ≤ x ≤ b,

with appropriate boundary conditions at a and b, as discussed previously. Let’s recast the derivation
of the basic matrix method in a slightly different way.

We are interested in differencing the function y(x), discretized on a grid (xn, yn) in a way that
allows us to relate yn to its neighboring values. Given that y = yn at x = xn, we can write, for
yn+1 = y(xn+1) = y(xn + h):

yn+1 = yn + hy′n + 1
2h

2y′′ + 1
6h

3y′′′ + 1
24h

4y′′′′ + 1
120h

5y′′′′′ +O(h6).

Similarly, for yn−1 (i.e. replacing h by −h),

yn−1 = yn − hy′n + 1
2h

2y′′n − 1
6h

3y′′′n + 1
24h

4y′′′′n − 1
120h

5y′′′′′n +O(h6).

Adding these equations gives

yn+1 − 2yn + yn−1 = h2y′′n + 1
12h

4y′′′′n +O(h6).

The left-hand side confirms our earlier second-order formula for the difference approximation to y′′n:

y′′n =
yn1 − 2yn + yn−1

h2
+O(h2). (1)

but now we see that the next term in the expansion, i.e. the error we are making in the earlier
differencing, is 1

12h
4y′′′′n . We can also view this formula as a general method for making a second-

order accurate approximation to any second derivative.
The trick that Numerov invented is to determine the fourth derivative by differentiating the

original differential equation:

y′′ = −g(x)y + s(x)

y′′′′ =
d2

dx2
[−g(x)y + s(x)] .

We can estimate the second derivative using the same formula as before:

y′′′′n =
−gn+1yn+1 + 2gnyn − gn−1yn−1 + sn+1 − 2sn + sn−1

h2
+O(h2),

where gn = g(xn), etc. Thus the next term in the Taylor series for y is

1
12h

4y′′′′n = 1
12h

2 (−gn+1yn+1 + 2gnyn − gn−1yn−1 + sn+1 − 2sn + sn−1) +O(h6).

Substituting this into equation (1) to obtain a new expression for y′′n

h2y′′n =
(
1 + 1

12h
2gn+1

)
yn+1−2

(
1 + 1

12h
2gn
)
yn+

(
1 + 1

12h
2gn−1

)
yn−1− 1

12h
2 (sn+1 − 2sn + sn−1) ,



and the original ODE then becomes(
1 + 1

12h
2gn+1

)
yn+1 − 2

(
1 − 5

12h
2gn
)
yn +

(
1 + 1

12h
2gn−1

)
yn−1 = 1

12h
2 (sn+1 + 10sn + sn−1) .

We can now solve the (inhomogeneous) boundary value problem as a matrix equation just as before.
Note that, once again, the boundary values y0 and yN enter the problem through the n = 1 and
n = N − 1 rows.

For eigenvalue problems, such as

y′′ + g(x)y = −zy,

the differencing of the left side of the equation is as above, but now the right side becomes

− 1
12h

2z (yn+1 + 10yn + yn−1) ,

so the matrix equation to solve is
Ay = − 1

12h
2zBy,

where y is the N −1 dimensional column vector (y1, y2, . . . , yN−1)
T , and the matrices A and B are

A =



β1 α1 0 0 0 · · · 0 0 0
γ2 β2 α2 0 0 · · · 0 0 0
0 γ3 β3 α3 0 · · · 0 0 0
.
.
.
0 0 0 0 0 · · · 0 γN−1 βN−1


,

where αn = 1 + 1
12h

2gn+1, βn = 2
(
1 − 5

12h
2gn
)
, γn = 1 + 1

12h
2gn−1, for n = 1, . . . , N − 1, and

B =



10 1 0 0 0 · · · 0 0 0
1 10 1 0 0 · · · 0 0 0
0 1 10 1 0 · · · 0 0 0
0 0 1 10 1 · · · 0 0 0
.
.
.
0 0 0 0 0 0 · · · 1 10


.

The solution to the problem then reduces to finding the eigenvectors and eigenvalues of the matrix
B−1A.


