
N
u

m
e

rica
l
R

e
cip

e
s:

T
h

e
A

rt
o

f
S

cie
n

tific
C

o
m

p
u

tin
g

,
T

h
ird

E
d

itio
n

,
b
y

W
.H

.
P

re
ss,

S
.A

.
Te

u
ko

lsky,
W

.T.
V

e
tte

rlin
g

,
a

n
d

B
.P.

F
la

n
n

e
ry.

V
e

rsio
n

3
.0

4
(2

0
1

1
).

Te
xt

is
C

o
p
yrig

h
t

c!
1

9
8

8
-2

0
0

7
b
y

C
a

m
b

rid
g

e
U

n
ive

rsity
P

re
ss.

C
o

m
p

u
te

r
so

u
rce

co
d

e
is

C
o

p
yrig

h
t

c!
1

9
8

7
-2

0
0

7
b
y

N
u

m
e

rica
l
R

e
cip

e
s

S
o

ftw
a

re
.

H
a

rd
co

ve
r

b
o

o
k

IS
B

N
9

7
8

-0
-5

2
1

-8
8

0
6

8
-8

is
p

u
b
lish

e
d

b
y

C
a

m
b

rid
g

e
U

n
ive

rsity
P

re
ss,

h
ttp

://w
w

w
.ca

m
b

rid
g

e
.o

rg
.

T
h

is
e

le
ctro

n
ic

e
d

itio
n

is
p

u
b
lish

e
d

b
y

N
u

m
e

rica
l
R

e
cip

e
s

S
o

ftw
a

re
,

h
ttp

://n
u

m
e

rica
l.re

cip
e

s.
P

e
rm

issio
n

is
g
ra

n
te

d
fo

r
a

u
th

o
rize

d
su

b
scrib

e
rs

to
m

a
ke

o
n

e
p

a
p

e
r

co
p
y

fo
r

th
e

ir
o
w

n
p

e
rso

n
a

lu
se

.
F

u
rth

e
r

re
p

ro
d

u
ctio

n
,
o

r
a

n
y

co
p
yin

g
o

f
m

a
ch

in
e

-re
a

d
a

b
le

file
s

(in
clu

d
in

g
th

is
o

n
e

)
to

a
n
y

p
u

b
lic

se
rve

r
co

m
p

u
te

r,
is

strictly
p

ro
h

ib
ite

d
.

5.7 Numerical Derivatives 229

(in that same case, a complex-conjugate pair). Equations (5.6.13) – (5.6.16) are
arranged both to minimize roundoff error and also (as pointed out by A.J. Glassman)
to ensure that no choice of branch for the complex cube root can result in the spurious
loss of a distinct root.

If you need to solve many cubic equations with only slightly different coeffi-
cients, it is more efficient to use Newton’s method (!9.4).

CITED REFERENCES AND FURTHER READING:

Weast, R.C. (ed.) 1967, Handbook of Tables for Mathematics, 3rd ed. (Cleveland: The Chemical
Rubber Co.), pp. 130–133.

Pachner, J. 1983, Handbook of Numerical Analysis Applications (New York: McGraw-Hill), !6.1.

McKelvey, J.P. 1984, “Simple Transcendental Expressions for the Roots of Cubic Equations,”
American Journal of Physics, vol. 52, pp. 269–270; see also vol. 53, p. 775, and vol. 55,
pp. 374–375.

5.7 Numerical Derivatives

Imagine that you have a procedure that computes a function f .x/, and now you
want to compute its derivative f 0.x/. Easy, right? The definition of the derivative,
the limit as h ! 0 of

f 0.x/ !
f .x C h/ " f .x/

h
(5.7.1)

practically suggests the program: Pick a small value h; evaluate f .x C h/; you
probably have f .x/ already evaluated, but if not, do it too; finally, apply equation
(5.7.1). What more needs to be said?

Quite a lot, actually. Applied uncritically, the above procedure is almost guar-
anteed to produce inaccurate results. Applied properly, it can be the right way to
compute a derivative only when the function f is fiercely expensive to compute;
when you already have invested in computing f .x/; and when, therefore, you want
to get the derivative in no more than a single additional function evaluation. In such
a situation, the remaining issue is to choose h properly, an issue we now discuss.

There are two sources of error in equation (5.7.1), truncation error and roundoff
error. The truncation error comes from higher terms in the Taylor series expansion,

f .x C h/ D f .x/ C hf 0.x/ C 1
2
h2f 00.x/ C 1

6
h3f 000.x/ C # # # (5.7.2)

whence
f .x C h/ " f .x/

h
D f 0 C

1

2
hf 00 C # # # (5.7.3)

The roundoff error has various contributions. First there is roundoff error in h: Sup-
pose, by way of an example, that you are at a point x D 10:3 and you blindly choose
h D 0:0001. Neither x D 10:3 nor x C h D 10:30001 is a number with an ex-
act representation in binary; each is therefore represented with some fractional error
characteristic of the machine’s floating-point format, "m, whose value in single pre-
cision may be $ 10"7. The error in the effective value of h, namely the difference
between x C h and x as represented in the machine, is therefore on the order of "mx,



230 Chapter 5. Evaluation of Functions

which implies a fractional error in h of order $ "mx=h $ 10"2! By equation (5.7.1),
this immediately implies at least the same large fractional error in the derivative.

We arrive at Lesson 1: Always choose h so that x Ch and x differ by an exactly
representable number. This can usually be accomplished by the program steps

temp D x C h

h D temp " x
(5.7.4)

Some optimizing compilers, and some computers whose floating-point chips have
higher internal accuracy than is stored externally, can foil this trick; if so, it is
usually enough to declare temp as volatile, or else to call a dummy function
donothing(temp) between the two equations (5.7.4). This forces temp into and
out of addressable memory.

With h an “exact” number, the roundoff error in equation (5.7.1) is approxi-
mately er $ "f jf .x/=hj. Here "f is the fractional accuracy with which f is com-
puted; for a simple function this may be comparable to the machine accuracy, "f !
"m, but for a complicated calculation with additional sources of inaccuracy it may
be larger. The truncation error in equation (5.7.3) is on the order of et $ jhf 00.x/j.
Varying h to minimize the sum er C et gives the optimal choice of h,

h $

s

"f f

f 00
! p

"f xc (5.7.5)

where xc % .f =f 00/1=2 is the “curvature scale” of the function f or the “character-
istic scale” over which it changes. In the absence of any other information, one often
assumes xc D x (except near x D 0, where some other estimate of the typical x
scale should be used).

With the choice of equation (5.7.5), the fractional accuracy of the computed
derivative is

.er C et /=jf 0j $ p
"f .ff 00=f 02/1=2 $ p

"f (5.7.6)

Here the last order-of-magnitude equality assumes that f , f 0, and f 00 all share the
same characteristic length scale, which is usually the case. One sees that the simple
finite difference equation (5.7.1) gives at best only the square root of the machine
accuracy "m.

If you can afford two function evaluations for each derivative calculation, then
it is significantly better to use the symmetrized form

f 0.x/ !
f .x C h/ " f .x " h/

2h
(5.7.7)

In this case, by equation (5.7.2), the truncation error is et $ h2f 000. The roundoff
error er is about the same as before. The optimal choice of h, by a short calculation
analogous to the one above, is now

h $
!

"f f

f 000

"1=3

$ ."f /1=3xc (5.7.8)

and the fractional error is

.er C et /=jf 0j $ ."f /2=3f 2=3.f 000/1=3=f 0 $ ."f /2=3 (5.7.9)



5.7 Numerical Derivatives 231

which will typically be an order of magnitude (single precision) or two orders of
magnitude (double precision) better than equation (5.7.6). We have arrived at Lesson
2: Choose h to be the correct power of "f or "m times a characteristic scale xc .

You can easily derive the correct powers for other cases [1]. For a function of
two dimensions, for example, and the mixed derivative formula

@2f

@x@y
D

Œf .x C h; y C h/ " f .x C h; y " h/# " Œf .x " h; y C h/ " f .x " h; y " h/#

4h2

(5.7.10)

the correct scaling is h $ "
1=4
f

xc .
It is disappointing, certainly, that no simple finite difference formula like equa-

tion (5.7.1) or (5.7.7) gives an accuracy comparable to the machine accuracy "m, or
even the lower accuracy to which f is evaluated, "f . Are there no better methods?

Yes, there are. All, however, involve exploration of the function’s behavior over
scales comparable to xc , plus some assumption of smoothness, or analyticity, so that
the high-order terms in a Taylor expansion like equation (5.7.2) have some meaning.
Such methods also involve multiple evaluations of the function f , so their increased
accuracy must be weighed against increased cost.

The general idea of “Richardson’s deferred approach to the limit” is particularly
attractive. For numerical integrals, that idea leads to so-called Romberg integration
(for review, see !4.3). For derivatives, one seeks to extrapolate, to h ! 0, the result
of finite difference calculations with smaller and smaller finite values of h. By the
use of Neville’s algorithm (!3.2), one uses each new finite difference calculation to
produce both an extrapolation of higher order and also extrapolations of previous,
lower, orders but with smaller scales h. Ridders [2] has given a nice implementation
of this idea; the following program, dfridr, is based on his algorithm, modified by
an improved termination criterion. Input to the routine is a function f (called func),
a position x, and a largest stepsize h (more analogous to what we have called xc

above than to what we have called h). Output is the returned value of the derivative
and an estimate of its error, err.

template<class T> dfridr.h
Doub dfridr(T &func, const Doub x, const Doub h, Doub &err)
Returns the derivative of a function func at a point x by Ridders’ method of polynomial extrap-
olation. The value h is input as an estimated initial stepsize; it need not be small, but rather
should be an increment in x over which func changes substantially. An estimate of the error in
the derivative is returned as err.
{

const Int ntab=10; Sets maximum size of tableau.
const Doub con=1.4, con2=(con*con); Stepsize decreased by CON at each iteration.
const Doub big=numeric_limits<Doub>::max();
const Doub safe=2.0; Return when error is SAFE worse than the

best so far.Int i,j;
Doub errt,fac,hh,ans;
MatDoub a(ntab,ntab);
if (h == 0.0) throw("h must be nonzero in dfridr.");
hh=h;
a[0][0]=(func(x+hh)-func(x-hh))/(2.0*hh);
err=big;
for (i=1;i<ntab;i++) {
Successive columns in the Neville tableau will go to smaller stepsizes and higher orders of
extrapolation.

hh /= con;
a[0][i]=(func(x+hh)-func(x-hh))/(2.0*hh); Try new, smaller stepsize.
fac=con2;



232 Chapter 5. Evaluation of Functions

for (j=1;j<=i;j++) { Compute extrapolations of various orders, requiring
no new function eval-
uations.

a[j][i]=(a[j-1][i]*fac-a[j-1][i-1])/(fac-1.0);
fac=con2*fac;
errt=MAX(abs(a[j][i]-a[j-1][i]),abs(a[j][i]-a[j-1][i-1]));
The error strategy is to compare each new extrapolation to one order lower, both
at the present stepsize and the previous one.
if (errt <= err) { If error is decreased, save the improved answer.

err=errt;
ans=a[j][i];

}
}
if (abs(a[i][i]-a[i-1][i-1]) >= safe*err) break;
If higher order is worse by a significant factor SAFE, then quit early.

}
return ans;

}

In dfridr, the number of evaluations of func is typically 6 to 12, but is allowed
to be as great as 2&NTAB. As a function of input h, it is typical for the accuracy
to get better as h is made larger, until a sudden point is reached where nonsensical
extrapolation produces an early return with a large error. You should therefore choose
a fairly large value for h but monitor the returned value err, decreasing h if it is not
small. For functions whose characteristic x scale is of order unity, we typically take
h to be a few tenths.

Besides Ridders’ method, there are other possible techniques. If your function is
fairly smooth, and you know that you will want to evaluate its derivative many times
at arbitrary points in some interval, then it makes sense to construct a Chebyshev
polynomial approximation to the function in that interval, and to evaluate the deriva-
tive directly from the resulting Chebyshev coefficients. This method is described in
!5.8 – !5.9, following.

Another technique applies when the function consists of data that is tabulated at
equally spaced intervals, and perhaps also noisy. One might then want, at each point,
to least-squares fit a polynomial of some degree M , using an additional number nL of
points to the left and some number nR of points to the right of each desired x value.
The estimated derivative is then the derivative of the resulting fitted polynomial. A
very efficient way to do this construction is via Savitzky-Golay smoothing filters,
which will be discussed later, in !14.9. There we will give a routine for getting filter
coefficients that not only construct the fitting polynomial but, in the accumulation
of a single sum of data points times filter coefficients, evaluate it as well. In fact,
the routine given, savgol, has an argument ld that determines which derivative of
the fitted polynomial is evaluated. For the first derivative, the appropriate setting is
ld=1, and the value of the derivative is the accumulated sum divided by the sampling
interval h.

CITED REFERENCES AND FURTHER READING:

Dennis, J.E., and Schnabel, R.B. 1983, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations; reprinted 1996 (Philadelphia: S.I.A.M.), !5.4 – !5.6.[1]

Ridders, C.J.F. 1982, “Accurate computation of F 0.x/ and F 0.x/F 00.x/,” Advances in Engineer-
ing Software, vol. 4, no. 2, pp. 75–76.[2]


