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4.6 Gaussian Quadratures and Orthogonal
Polynomials

In the formulas of ÷4.1, the integral of a function was approximated by the sum

of its functional values at a set of equally spaced points, multiplied by certain aptly

chosen weighting coefficients. We saw that as we allowed ourselves more freedom

in choosing the coefficients, we could achieve integration formulas of higher and

higher order. The idea of Gaussian quadratures is to give ourselves the freedom to

choose not only the weighting coefficients, but also the location of the abscissas at

which the function is to be evaluated. They will no longer be equally spaced. Thus,

we will have twice the number of degrees of freedom at our disposal; it will turn out

that we can achieve Gaussian quadrature formulas whose order is, essentially, twice

that of the Newton-Cotes formula with the same number of function evaluations.

Does this sound too good to be true? Well, in a sense it is. The catch is a familiar

one, which cannot be overemphasized: High order is not the same as high accuracy.

High order translates to high accuracy only when the integrand is very smooth, in the

sense of being “well-approximated by a polynomial.”

There is, however, one additional feature of Gaussian quadrature formulas that

adds to their usefulness: We can arrange the choice of weights and abscissas to make

the integral exact for a class of integrands “polynomials times some known function

W.x/” rather than for the usual class of integrands “polynomials.” The function

W.x/ can then be chosen to remove integrable singularities from the desired integral.

Given W.x/, in other words, and given an integer N , we can find a set of weights wj

and abscissas xj such that the approximation

Z b

a

W.x/f .x/dx �
N �1
X

j D0

wj f .xj / (4.6.1)

is exact if f .x/ is a polynomial. For example, to do the integral

Z 1

�1

exp.� cos2 x/p
1 � x2

dx (4.6.2)
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(not a very natural looking integral, it must be admitted), we might well be interested

in a Gaussian quadrature formula based on the choice

W.x/ D 1p
1 � x2

(4.6.3)

in the interval .�1; 1/. (This particular choice is called Gauss-Chebyshev integration,

for reasons that will become clear shortly.)

Notice that the integration formula (4.6.1) can also be written with the weight

function W.x/ not overtly visible: Define g.x/ � W.x/f .x/ and vj � wj =W.xj /.

Then (4.6.1) becomes
Z b

a

g.x/dx �
N �1
X

j D0

vj g.xj / (4.6.4)

Where did the function W.x/ go? It is lurking there, ready to give high-order accu-

racy to integrands of the form polynomials times W.x/, and ready to deny high-order

accuracy to integrands that are otherwise perfectly smooth and well-behaved. When

you find tabulations of the weights and abscissas for a given W.x/, you have to de-

termine carefully whether they are to be used with a formula in the form of (4.6.1),

or like (4.6.4).

So far our introduction to Gaussian quadrature is pretty standard. However,

there is an aspect of the method that is not as widely appreciated as it should be: For

smooth integrands (after factoring out the appropriate weight function), Gaussian

quadrature converges exponentially fast as N increases, because the order of the

method, not just the density of points, increases with N . This behavior should be

contrasted with the power-law behavior (e.g., 1=N 2 or 1=N 4) of the Newton-Cotes

based methods in which the order remains fixed (e.g., 2 or 4) even as the density of

points increases. For a more rigorous discussion, see ÷20.7.4.

Here is an example of a quadrature routine that contains the tabulated abscissas

and weights for the case W.x/ D 1 and N D 10. Since the weights and abscissas

are, in this case, symmetric around the midpoint of the range of integration, there are

actually only five distinct values of each:

template <class T>qgaus.h
Doub qgaus(T &func, const Doub a, const Doub b)
Returns the integral of the function or functor func between a and b, by ten-point Gauss-
Legendre integration: the function is evaluated exactly ten times at interior points in the range
of integration.
{

Here are the abscissas and weights:
static const Doub x[]={0.1488743389816312,0.4333953941292472,

0.6794095682990244,0.8650633666889845,0.9739065285171717};
static const Doub w[]={0.2955242247147529,0.2692667193099963,

0.2190863625159821,0.1494513491505806,0.0666713443086881};
Doub xm=0.5*(b+a);
Doub xr=0.5*(b-a);
Doub s=0; Will be twice the average value of the function, since the

ten weights (five numbers above each used twice)
sum to 2.

for (Int j=0;j<5;j++) {
Doub dx=xr*x[j];
s += w[j]*(func(xm+dx)+func(xm-dx));

}
return s *= xr; Scale the answer to the range of integration.

}
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The above routine illustrates that one can use Gaussian quadratures without

necessarily understanding the theory behind them: One just locates tabulated weights

and abscissas in a book (e.g., [1] or [2]). However, the theory is very pretty, and it will

come in handy if you ever need to construct your own tabulation of weights and

abscissas for an unusual choice of W.x/. We will therefore give, without any proofs,

some useful results that will enable you to do this. Several of the results assume that

W.x/ does not change sign inside .a; b/, which is usually the case in practice.

The theory behind Gaussian quadratures goes back to Gauss in 1814, who used

continued fractions to develop the subject. In 1826, Jacobi rederived Gauss’s results

by means of orthogonal polynomials. The systematic treatment of arbitrary weight

functions W.x/ using orthogonal polynomials is largely due to Christoffel in 1877.

To introduce these orthogonal polynomials, let us fix the interval of interest to be

.a; b/. We can define the “scalar product of two functions f and g over a weight

function W ” as

hf jgi �
Z b

a

W.x/f .x/g.x/dx (4.6.5)

The scalar product is a number, not a function of x. Two functions are said to be

orthogonal if their scalar product is zero. A function is said to be normalized if its

scalar product with itself is unity. A set of functions that are all mutually orthogonal

and also all individually normalized is called an orthonormal set.

We can find a set of polynomials (i) that includes exactly one polynomial of

order j , called pj .x/, for each j D 0; 1; 2; : : : , and (ii) all of which are mutually

orthogonal over the specified weight function W.x/. A constructive procedure for

finding such a set is the recurrence relation

p�1.x/ � 0

p0.x/ � 1

pj C1.x/ D .x � aj /pj .x/ � bj pj �1.x/ j D 0; 1; 2; : : :

(4.6.6)

where

aj D
˝

xpj jpj

˛

˝

pj jpj

˛ j D 0; 1; : : :

bj D
˝

pj jpj

˛

˝

pj �1jpj �1

˛ j D 1; 2; : : :

(4.6.7)

The coefficient b0 is arbitrary; we can take it to be zero.

The polynomials defined by (4.6.6) are monic, that is, the coefficient of their

leading term [xj for pj .x/] is unity. If we divide each pj .x/ by the constant

Œ
˝

pj jpj

˛

�1=2, we can render the set of polynomials orthonormal. One also encounters

orthogonal polynomials with various other normalizations. You can convert from a

given normalization to monic polynomials if you know that the coefficient of xj in

pj is �j , say; then the monic polynomials are obtained by dividing each pj by �j .

Note that the coefficients in the recurrence relation (4.6.6) depend on the adopted

normalization.

The polynomial pj .x/ can be shown to have exactly j distinct roots in the

interval .a; b/. Moreover, it can be shown that the roots of pj .x/ “interleave” the

j � 1 roots of pj �1.x/, i.e., there is exactly one root of the former in between each

two adjacent roots of the latter. This fact comes in handy if you need to find all the
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roots. You can start with the one root of p1.x/ and then, in turn, bracket the roots of

each higher j , pinning them down at each stage more precisely by Newton’s rule or

some other root-finding scheme (see Chapter 9).

Why would you ever want to find all the roots of an orthogonal polynomial

pj .x/? Because the abscissas of the N -point Gaussian quadrature formulas (4.6.1)

and (4.6.4) with weighting function W.x/ in the interval .a; b/ are precisely the roots

of the orthogonal polynomial pN .x/ for the same interval and weighting function.

This is the fundamental theorem of Gaussian quadratures, and it lets you find the

abscissas for any particular case.

Once you know the abscissas x0; : : : ; xN �1 , you need to find the weights wj ,

j D 0; : : : ; N � 1. One way to do this (not the most efficient) is to solve the set of

linear equations

2

6

6

6

4

p0.x0/ : : : p0.xN �1/

p1.x0/ : : : p1.xN �1/
:::

:::

pN �1.x0/ : : : pN �1.xN �1/

3

7

7

7

5

2

6

6

6

4

w0

w1

:::

wN �1

3

7

7

7

5

D

2

6

6

6

4

R b

a
W.x/p0.x/dx

0
:::

0

3

7

7

7

5

(4.6.8)

Equation (4.6.8) simply solves for those weights such that the quadrature (4.6.1)

gives the correct answer for the integral of the first N orthogonal polynomials. Note

that the zeros on the right-hand side of (4.6.8) appear because p1.x/; : : : ; pN �1.x/

are all orthogonal to p0.x/, which is a constant. It can be shown that, with those

weights, the integral of the next N � 1 polynomials is also exact, so that the quadra-

ture is exact for all polynomials of degree 2N � 1 or less. Another way to evaluate

the weights (though one whose proof is beyond our scope) is by the formula

wj D hpN �1jpN �1i
pN �1.xj /p0

N .xj /
(4.6.9)

where p0
N .xj / is the derivative of the orthogonal polynomial at its zero xj .

The computation of Gaussian quadrature rules thus involves two distinct phases:

(i) the generation of the orthogonal polynomials p0; : : : ; pN , i.e., the computation of

the coefficients aj , bj in (4.6.6), and (ii) the determination of the zeros of pN .x/, and

the computation of the associated weights. For the case of the “classical” orthogonal

polynomials, the coefficients aj and bj are explicitly known (equations 4.6.10 –

4.6.14 below) and phase (i) can be omitted. However, if you are confronted with a

“nonclassical” weight function W.x/, and you don’t know the coefficients aj and

bj , the construction of the associated set of orthogonal polynomials is not trivial. We

discuss it at the end of this section.

4.6.1 Computation of the Abscissas and Weights

This task can range from easy to difficult, depending on how much you already

know about your weight function and its associated polynomials. In the case of

classical, well-studied, orthogonal polynomials, practically everything is known, in-

cluding good approximations for their zeros. These can be used as starting guesses,

enabling Newton’s method (to be discussed in ÷9.4) to converge very rapidly. New-

ton’s method requires the derivative p0
N .x/, which is evaluated by standard relations

in terms of pN and pN �1. The weights are then conveniently evaluated by equation
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(4.6.9). For the following named cases, this direct root finding is faster, by a factor

of 3 to 5, than any other method.

Here are the weight functions, intervals, and recurrence relations that generate

the most commonly used orthogonal polynomials and their corresponding Gaussian

quadrature formulas.

Gauss-Legendre:

W.x/ D 1 � 1 < x < 1

.j C 1/Pj C1 D .2j C 1/xPj � jPj �1

(4.6.10)

Gauss-Chebyshev:

W.x/ D .1 � x2/�1=2 � 1 < x < 1

Tj C1 D 2xTj � Tj �1

(4.6.11)

Gauss-Laguerre:

W.x/ D x˛e�x 0 < x < 1
.j C 1/L˛

j C1 D .�x C 2j C ˛ C 1/L˛
j � .j C ˛/L˛

j �1

(4.6.12)

Gauss-Hermite:

W.x/ D e�x2 � 1 < x < 1
Hj C1 D 2xHj � 2jHj �1

(4.6.13)

Gauss-Jacobi:

W.x/ D .1 � x/˛.1 C x/ˇ � 1 < x < 1

cj P
.˛;ˇ/

j C1 D .dj C ej x/P
.˛;ˇ/

j � fj P
.˛;ˇ/

j �1

(4.6.14)

where the coefficients cj ; dj ; ej , and fj are given by

cj D 2.j C 1/.j C ˛ C ˇ C 1/.2j C ˛ C ˇ/

dj D .2j C ˛ C ˇ C 1/.˛2 � ˇ2/

ej D .2j C ˛ C ˇ/.2j C ˛ C ˇ C 1/.2j C ˛ C ˇ C 2/

fj D 2.j C ˛/.j C ˇ/.2j C ˛ C ˇ C 2/

(4.6.15)

We now give individual routines that calculate the abscissas and weights for

these cases. First comes the most common set of abscissas and weights, those of

Gauss-Legendre. The routine, due to G.B. Rybicki, uses equation (4.6.9) in the

special form for the Gauss-Legendre case,

wj D 2

.1 � x2
j /ŒP 0

N .xj /�2
(4.6.16)

The routine also scales the range of integration from .x1; x2/ to .�1; 1/, and provides

abscissas xj and weights wj for the Gaussian formula

Z x2

x1

f .x/dx D
N �1
X

j D0

wj f .xj / (4.6.17)
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void gauleg(const Doub x1, const Doub x2, VecDoub_O &x, VecDoub_O &w)gauss wgts.h
Given the lower and upper limits of integration x1 and x2, this routine returns arrays x[0..n-1]
and w[0..n-1] of length n, containing the abscissas and weights of the Gauss-Legendre n-point
quadrature formula.
{

const Doub EPS=1.0e-14; EPS is the relative precision.
Doub z1,z,xm,xl,pp,p3,p2,p1;
Int n=x.size();
Int m=(n+1)/2; The roots are symmetric in the interval, so

we only have to find half of them.xm=0.5*(x2+x1);
xl=0.5*(x2-x1);
for (Int i=0;i<m;i++) { Loop over the desired roots.

z=cos(3.141592654*(i+0.75)/(n+0.5));
Starting with this approximation to the ith root, we enter the main loop of refinement
by Newton’s method.
do {

p1=1.0;
p2=0.0;
for (Int j=0;j<n;j++) { Loop up the recurrence relation to get the

Legendre polynomial evaluated at z.p3=p2;
p2=p1;
p1=((2.0*j+1.0)*z*p2-j*p3)/(j+1);

}
p1 is now the desired Legendre polynomial. We next compute pp, its derivative,
by a standard relation involving also p2, the polynomial of one lower order.
pp=n*(z*p1-p2)/(z*z-1.0);
z1=z;
z=z1-p1/pp; Newton’s method.

} while (abs(z-z1) > EPS);
x[i]=xm-xl*z; Scale the root to the desired interval,
x[n-1-i]=xm+xl*z; and put in its symmetric counterpart.
w[i]=2.0*xl/((1.0-z*z)*pp*pp); Compute the weight
w[n-1-i]=w[i]; and its symmetric counterpart.

}
}

Next we give three routines that use initial approximations for the roots given

by Stroud and Secrest [2]. The first is for Gauss-Laguerre abscissas and weights, to

be used with the integration formula

Z 1

0

x˛e�xf .x/dx D
N �1
X

j D0

wj f .xj / (4.6.18)

void gaulag(VecDoub_O &x, VecDoub_O &w, const Doub alf)gauss wgts.h
Given alf, the parameter ˛ of the Laguerre polynomials, this routine returns arrays x[0..n-1]
and w[0..n-1] containing the abscissas and weights of the n-point Gauss-Laguerre quadrature
formula. The smallest abscissa is returned in x[0], the largest in x[n-1].
{

const Int MAXIT=10;
const Doub EPS=1.0e-14; EPS is the relative precision.
Int i,its,j;
Doub ai,p1,p2,p3,pp,z,z1;
Int n=x.size();
for (i=0;i<n;i++) { Loop over the desired roots.

if (i == 0) { Initial guess for the smallest root.
z=(1.0+alf)*(3.0+0.92*alf)/(1.0+2.4*n+1.8*alf);

} else if (i == 1) { Initial guess for the second root.
z += (15.0+6.25*alf)/(1.0+0.9*alf+2.5*n);

} else { Initial guess for the other roots.
ai=i-1;
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z += ((1.0+2.55*ai)/(1.9*ai)+1.26*ai*alf/
(1.0+3.5*ai))*(z-x[i-2])/(1.0+0.3*alf);

}
for (its=0;its<MAXIT;its++) { Refinement by Newton’s method.

p1=1.0;
p2=0.0;
for (j=0;j<n;j++) { Loop up the recurrence relation to get the

Laguerre polynomial evaluated at z.p3=p2;
p2=p1;
p1=((2*j+1+alf-z)*p2-(j+alf)*p3)/(j+1);

}
p1 is now the desired Laguerre polynomial. We next compute pp, its derivative,
by a standard relation involving also p2, the polynomial of one lower order.
pp=(n*p1-(n+alf)*p2)/z;
z1=z;
z=z1-p1/pp; Newton’s formula.
if (abs(z-z1) <= EPS) break;

}
if (its >= MAXIT) throw("too many iterations in gaulag");
x[i]=z; Store the root and the weight.
w[i] = -exp(gammln(alf+n)-gammln(Doub(n)))/(pp*n*p2);

}
}

Next is a routine for Gauss-Hermite abscissas and weights. If we use the “stan-

dard” normalization of these functions, as given in equation (4.6.13), we find that

the computations overflow for large N because of various factorials that occur. We

can avoid this by using instead the orthonormal set of polynomials zHj . They are

generated by the recurrence

zH�1 D 0; zH0 D 1

�1=4
; zHj C1 D x

r

2

j C 1
zHj �

r

j

j C 1
zHj �1 (4.6.19)

The formula for the weights becomes

wj D 2

Œ zH 0
N .xj /�2

(4.6.20)

while the formula for the derivative with this normalization is

zH 0
j D

p

2j zHj �1 (4.6.21)

The abscissas and weights returned by gauher are used with the integration formula

Z 1

�1

e�x2

f .x/dx D
N �1
X

j D0

wj f .xj / (4.6.22)

void gauher(VecDoub_O &x, VecDoub_O &w) gauss wgts.h
This routine returns arrays x[0..n-1] and w[0..n-1] containing the abscissas and weights of
the n-point Gauss-Hermite quadrature formula. The largest abscissa is returned in x[0], the
most negative in x[n-1].
{

const Doub EPS=1.0e-14,PIM4=0.7511255444649425;
Relative precision and 1=�1=4.
const Int MAXIT=10; Maximum iterations.
Int i,its,j,m;
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Doub p1,p2,p3,pp,z,z1;
Int n=x.size();
m=(n+1)/2;
The roots are symmetric about the origin, so we have to find only half of them.
for (i=0;i<m;i++) { Loop over the desired roots.

if (i == 0) { Initial guess for the largest root.
z=sqrt(Doub(2*n+1))-1.85575*pow(Doub(2*n+1),-0.16667);

} else if (i == 1) { Initial guess for the second largest root.
z -= 1.14*pow(Doub(n),0.426)/z;

} else if (i == 2) { Initial guess for the third largest root.
z=1.86*z-0.86*x[0];

} else if (i == 3) { Initial guess for the fourth largest root.
z=1.91*z-0.91*x[1];

} else { Initial guess for the other roots.
z=2.0*z-x[i-2];

}
for (its=0;its<MAXIT;its++) { Refinement by Newton’s method.

p1=PIM4;
p2=0.0;
for (j=0;j<n;j++) { Loop up the recurrence relation to get

the Hermite polynomial evaluated at
z.

p3=p2;
p2=p1;
p1=z*sqrt(2.0/(j+1))*p2-sqrt(Doub(j)/(j+1))*p3;

}
p1 is now the desired Hermite polynomial. We next compute pp, its derivative, by
the relation (4.6.21) using p2, the polynomial of one lower order.
pp=sqrt(Doub(2*n))*p2;
z1=z;
z=z1-p1/pp; Newton’s formula.
if (abs(z-z1) <= EPS) break;

}
if (its >= MAXIT) throw("too many iterations in gauher");
x[i]=z; Store the root
x[n-1-i] = -z; and its symmetric counterpart.
w[i]=2.0/(pp*pp); Compute the weight
w[n-1-i]=w[i]; and its symmetric counterpart.

}
}

Finally, here is a routine for Gauss-Jacobi abscissas and weights, which imple-

ment the integration formula

Z 1

�1

.1 � x/˛.1 C x/ˇ f .x/dx D
N �1
X

j D0

wj f .xj / (4.6.23)

void gaujac(VecDoub_O &x, VecDoub_O &w, const Doub alf, const Doub bet)gauss wgts.h
Given alf and bet, the parameters ˛ and ˇ of the Jacobi polynomials, this routine returns
arrays x[0..n-1] and w[0..n-1] containing the abscissas and weights of the n-point Gauss-
Jacobi quadrature formula. The largest abscissa is returned in x[0], the smallest in x[n-1].

{
const Int MAXIT=10;
const Doub EPS=1.0e-14; EPS is the relative precision.
Int i,its,j;
Doub alfbet,an,bn,r1,r2,r3;
Doub a,b,c,p1,p2,p3,pp,temp,z,z1;
Int n=x.size();
for (i=0;i<n;i++) { Loop over the desired roots.

if (i == 0) { Initial guess for the largest root.
an=alf/n;
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bn=bet/n;
r1=(1.0+alf)*(2.78/(4.0+n*n)+0.768*an/n);
r2=1.0+1.48*an+0.96*bn+0.452*an*an+0.83*an*bn;
z=1.0-r1/r2;

} else if (i == 1) { Initial guess for the second largest root.
r1=(4.1+alf)/((1.0+alf)*(1.0+0.156*alf));
r2=1.0+0.06*(n-8.0)*(1.0+0.12*alf)/n;
r3=1.0+0.012*bet*(1.0+0.25*abs(alf))/n;
z -= (1.0-z)*r1*r2*r3;

} else if (i == 2) { Initial guess for the third largest root.
r1=(1.67+0.28*alf)/(1.0+0.37*alf);
r2=1.0+0.22*(n-8.0)/n;
r3=1.0+8.0*bet/((6.28+bet)*n*n);
z -= (x[0]-z)*r1*r2*r3;

} else if (i == n-2) { Initial guess for the second smallest root.
r1=(1.0+0.235*bet)/(0.766+0.119*bet);
r2=1.0/(1.0+0.639*(n-4.0)/(1.0+0.71*(n-4.0)));
r3=1.0/(1.0+20.0*alf/((7.5+alf)*n*n));
z += (z-x[n-4])*r1*r2*r3;

} else if (i == n-1) { Initial guess for the smallest root.
r1=(1.0+0.37*bet)/(1.67+0.28*bet);
r2=1.0/(1.0+0.22*(n-8.0)/n);
r3=1.0/(1.0+8.0*alf/((6.28+alf)*n*n));
z += (z-x[n-3])*r1*r2*r3;

} else { Initial guess for the other roots.
z=3.0*x[i-1]-3.0*x[i-2]+x[i-3];

}
alfbet=alf+bet;
for (its=1;its<=MAXIT;its++) { Refinement by Newton’s method.

temp=2.0+alfbet; Start the recurrence with P0 and P1 to avoid
a division by zero when ˛ C ˇ D 0 or
�1.

p1=(alf-bet+temp*z)/2.0;
p2=1.0;
for (j=2;j<=n;j++) { Loop up the recurrence relation to get the

Jacobi polynomial evaluated at z.p3=p2;
p2=p1;
temp=2*j+alfbet;
a=2*j*(j+alfbet)*(temp-2.0);
b=(temp-1.0)*(alf*alf-bet*bet+temp*(temp-2.0)*z);
c=2.0*(j-1+alf)*(j-1+bet)*temp;
p1=(b*p2-c*p3)/a;

}
pp=(n*(alf-bet-temp*z)*p1+2.0*(n+alf)*(n+bet)*p2)/(temp*(1.0-z*z));
p1 is now the desired Jacobi polynomial. We next compute pp, its derivative, by
a standard relation involving also p2, the polynomial of one lower order.
z1=z;
z=z1-p1/pp; Newton’s formula.
if (abs(z-z1) <= EPS) break;

}
if (its > MAXIT) throw("too many iterations in gaujac");
x[i]=z; Store the root and the weight.
w[i]=exp(gammln(alf+n)+gammln(bet+n)-gammln(n+1.0)-

gammln(n+alfbet+1.0))*temp*pow(2.0,alfbet)/(pp*p2);
}

}

Legendre polynomials are special cases of Jacobi polynomials with ˛ D ˇ D 0,

but it is worth having the separate routine for them, gauleg, given above. Chebyshev

polynomials correspond to ˛ D ˇ D �1=2 (see ÷5.8). They have analytic abscissas

and weights:
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xj D cos

 

�.j C 1
2
/

N

!

wj D �

N

(4.6.24)

4.6.2 Case of Known Recurrences

Turn now to the case where you do not know good initial guesses for the zeros of your or-
thogonal polynomials, but you do have available the coefficients aj and bj that generate them.
As we have seen, the zeros of pN .x/ are the abscissas for the N -point Gaussian quadrature
formula. The most useful computational formula for the weights is equation (4.6.9) above,
since the derivative p0

N
can be efficiently computed by the derivative of (4.6.6) in the general

case, or by special relations for the classical polynomials. Note that (4.6.9) is valid as written
only for monic polynomials; for other normalizations, there is an extra factor of �N =�N �1,

where �N is the coefficient of xN in pN .
Except in those special cases already discussed, the best way to find the abscissas is not

to use a root-finding method like Newton’s method on pN .x/. Rather, it is generally faster
to use the Golub-Welsch [3] algorithm, which is based on a result of Wilf [4]. This algorithm
notes that if you bring the term xpj to the left-hand side of (4.6.6) and the term pj C1 to the
right-hand side, the recurrence relation can be written in matrix form as
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or
xp D T � p C pN eN �1 (4.6.26)

Here T is a tridiagonal matrix; p is a column vector of p0; p1; : : : ; pN �1; and eN �1 is a
unit vector with a 1 in the .N � 1/st (last) position and zeros elsewhere. The matrix T can be
symmetrized by a diagonal similarity transformation D to give

J D DTD�1 D

2

6

6

6

6

6
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a0

p
b1p

b1 a1

p
b2

:::
:::

p

bN �2 aN �2

p

bN �1
p

bN �1 aN �1

3

7

7

7

7

7

5

(4.6.27)

The matrix J is called the Jacobi matrix (not to be confused with other matrices named after
Jacobi that arise in completely different problems!). Now we see from (4.6.26) that pN .xj / D
0 is equivalent to xj being an eigenvalue of T . Since eigenvalues are preserved by a similarity
transformation, xj is an eigenvalue of the symmetric tridiagonal matrix J . Moreover, Wilf [4]
shows that if vj is the eigenvector corresponding to the eigenvalue xj , normalized so that
v � v D 1, then

wj D �0v2
j;0 (4.6.28)

where

�0 D
Z b

a
W.x/ dx (4.6.29)

and where vj;0 is the zeroth component of v . As we shall see in Chapter 11, finding all
eigenvalues and eigenvectors of a symmetric tridiagonal matrix is a relatively efficient and
well-conditioned procedure. We accordingly give a routine, gaucof, for finding the abscissas
and weights, given the coefficients aj and bj . Remember that if you know the recurrence
relation for orthogonal polynomials that are not normalized to be monic, you can easily convert
it to monic form by means of the quantities �j .
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void gaucof(VecDoub_IO &a, VecDoub_IO &b, const Doub amu0, VecDoub_O &x, gauss wgts2.h
VecDoub_O &w)

Computes the abscissas and weights for a Gaussian quadrature formula from the Jacobi matrix.
On input, a[0..n-1] and b[0..n-1] are the coefficients of the recurrence relation for the set of

monic orthogonal polynomials. The quantity �0 �
R b

a W.x/ dx is input as amu0. The abscissas
x[0..n-1] are returned in descending order, with the corresponding weights in w[0..n-1]. The
arrays a and b are modified. Execution can be speeded up by modifying tqli and eigsrt to
compute only the zeroth component of each eigenvector.
{

Int n=a.size();
for (Int i=0;i<n;i++)

if (i != 0) b[i]=sqrt(b[i]); Set up superdiagonal of Jacobi matrix.
Symmeig sym(a,b);
for (Int i=0;i<n;i++) {

x[i]=sym.d[i];
w[i]=amu0*sym.z[0][i]*sym.z[0][i]; Equation (4.6.28).

}
}

4.6.3 Orthogonal Polynomials with Nonclassical Weights
What do you do if your weight function is not one of the classical ones dealt with above

and you do not know the aj ’s and bj ’s of the recurrence relation (4.6.6) to use in gaucof?
Obviously, you need a method of finding the aj ’s and bj ’s.

The best general method is the Stieltjes procedure: First compute a0 from (4.6.7), and
then p1.x/ from (4.6.6). Knowing p0 and p1, compute a1 and b1 from (4.6.7), and so on.
But how are we to compute the inner products in (4.6.7)?

The textbook approach is to represent each pj .x/ explicitly as a polynomial in x and to
compute the inner products by multiplying out term by term. This will be feasible if we know
the first 2N moments of the weight function,

�j D
Z b

a
xj W.x/dx j D 0; 1; : : : ; 2N � 1 (4.6.30)

However, the solution of the resulting set of algebraic equations for the coefficients aj and bj
in terms of the moments �j is in general extremely ill-conditioned. Even in double precision,
it is not unusual to lose all accuracy by the time N D 12. We thus reject any procedure based
on the moments (4.6.30).

Gautschi [5] showed that the Stieltjes procedure is feasible if the inner products in (4.6.7)
are computed directly by numerical quadrature. This is only practicable if you can find a
quadrature scheme that can compute the integrals to high accuracy despite the singularities in
the weight function W.x/. Gautschi advocates the Fejér quadrature scheme [5] as a general-
purpose scheme for handling singularities when no better method is available. We have per-
sonally had much better experience with the transformation methods of ÷4.5, particularly the
DE rule and its variants.

We use a structure Stiel that implements the Stieltjes procedure. Its member function
get_weights generates the coefficients aj and bj of the recurrence relation, and then calls
gaucof to find the abscissas and weights. You can easily modify it to return the aj ’s and bj ’s
if you want them as well. Internally, the routine calls the function quad to do the integrals in
(4.6.7). For a finite range of integration, the routine uses the straight DE rule. This is effected
by invoking the constructor with five parameters: the number of quadrature abscissas (and
weights) desired, the lower and upper limits of integration, the parameter hmax to be passed
to the DE rule (see ÷4.5), and the weight function W.x/. For an infinite range of integration,
the routine invokes the trapezoidal rule with one of the coordinate transformations discussed
in ÷4.5. For this case you invoke the constructor that has no hmax, but takes the mapping
function x D x.t/ and its derivative dx=dt in addition to W.x/. Now the range of integration
you input is the finite range of the trapezoidal rule.

This will all be clearer with some examples. Consider first the weight function

W.x/ D � log x (4.6.31)



190 Chapter 4. Integration of Functions

on the finite interval .0; 1/. Normally, for the finite range case (DE rule), the weight function
must be coded as a function of two variables, W.x; ı/, where ı is the distance from the end-
point singularity. Since the logarithmic singularity at the endpoint x D 0 is “mild,” there is no
need to use the argument ı in coding the function:

Doub wt(const Doub x, const Doub del)
{

return -log(x);
}

A value of hmax D 3:7 will give full double precision, as discussed in ÷4.5, so the calling code
looks like this:

n= ...
VecDoub x(n),w(n);
Stiel s(n,0.0,1.0,3.7,wt);
s.get_weights(x,w);

For the infinite range case, in addition to the weight function W.x/, you have to supply
two functions for the coordinate transformation you want to use (see equation 4.5.14). We’ll
denote the mapping x D x.t/ by fx and dx=dt by fdxdt, but you can use any names you
like. All these functions are coded as functions of one variable.

Here is an example of the user-supplied functions for the weight function

W.x/ D x1=2

ex C 1
(4.6.32)

on the interval .0; 1/. Gaussian quadrature based on W.x/ has been proposed for evaluating
generalized Fermi-Dirac integrals [6] (cf. ÷4.5). We use the “mixed” DE rule of equation

(4.5.14), x D et�e�t
. As is typical with the Stieltjes procedure, you get abscissas and weights

within about one or two significant digits of machine accuracy for N of a few dozen.

Doub wt(const Doub x)
{

Doub s=exp(-x);
return sqrt(x)*s/(1.0+s);

}

Doub fx(const Doub t)
{

return exp(t-exp(-t));
}

Doub fdxdt(const Doub t)
{

Doub s=exp(-t);
return exp(t-s)*(1.0+s);

}
...

Stiel ss(n,-5.5,6.5,wt,fx,fdxdt);
ss.get_weights(x,w);

The listing of the Stiel object, and discussion of some of the C++ intricacies of its
coding, are in a Webnote [9].

Two other algorithms exist [7,8] for finding abscissas and weights for Gaussian quadra-
tures. The first starts similarly to the Stieltjes procedure by representing the inner product
integrals in equation (4.6.7) as discrete quadratures using some quadrature rule. This defines a
matrix whose elements are formed from the abscissas and weights in your chosen quadrature
rule, together with the given weight function. Then an algorithm due to Lanczos is used to
transform this to a matrix that is essentially the Jacobi matrix (4.6.27).

The second algorithm is based on the idea of modified moments. Instead of using powers
of x as a set of basis functions to represent the pj ’s, one uses some other known set of orthog-
onal polynomials �j .x/, say. Then the inner products in equation (4.6.7) will be expressible
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in terms of the modified moments

�j D
Z b

a
�j .x/W.x/dx j D 0; 1; : : : ; 2N � 1 (4.6.33)

The modified Chebyshev algorithm (due to Sack and Donovan [10] and later improved by
Wheeler [11]) is an efficient algorithm that generates the desired aj ’s and bj ’s from the modi-
fied moments. Roughly speaking, the improved stability occurs because the polynomial basis
“samples” the interval .a; b/ better than the power basis when the inner product integrals are
evaluated, especially if its weight function resembles W.x/. The algorithm requires that the
modified moments (4.6.33) be accurately computed. Sometimes there is a closed form, for
example, for the important case of the log x weight function [12,8]. Otherwise you have to
use a suitable discretization procedure to compute the modified moments [7,8], just as we did
for the inner products in the Stieltjes procedure. There is some art in choosing the auxil-
iary polynomials �j , and in practice it is not always possible to find a set that removes the
ill-conditioning.

Gautschi [8] has given an extensive suite of routines that handle all three of the algo-
rithms we have described, together with many other aspects of orthogonal polynomials and
Gaussian quadrature. However, for most straightforward applications, you should find Stiel
together with a suitable DE rule quadrature more than adequate.

4.6.4 Extensions of Gaussian Quadrature

There are many different ways in which the ideas of Gaussian quadrature have

been extended. One important extension is the case of preassigned nodes: Some

points are required to be included in the set of abscissas, and the problem is to choose

the weights and the remaining abscissas to maximize the degree of exactness of the

quadrature rule. The most common cases are Gauss-Radau quadrature, where one of

the nodes is an endpoint of the interval, either a or b, and Gauss-Lobatto quadrature,

where both a and b are nodes. Golub [13,8] has given an algorithm similar to gaucof

for these cases.

An N -point Gauss-Radau rule has the form of equation (4.6.1), where x1 is chosen to
be either a or b (x1 must be finite). You can construct the rule from the coefficients for
the corresponding ordinary N -point Gaussian quadrature. Simply set up the Jacobi matrix
equation (4.6.27), but modify the entry aN �1:

a0
N �1 D x1 � bN �1

pN �2.x1/

pN �1.x1/
(4.6.34)

Here is the routine:

void radau(VecDoub_IO &a, VecDoub_IO &b, const Doub amu0, const Doub x1, gauss wgts2.h
VecDoub_O &x, VecDoub_O &w)

Computes the abscissas and weights for a Gauss-Radau quadrature formula. On input, a[0..n-1]
and b[0..n-1] are the coefficients of the recurrence relation for the set of monic orthogo-
nal polynomials corresponding to the weight function. (b[0] is not referenced.) The quantity

�0 �
R b

a W.x/ dx is input as amu0. x1 is input as either endpoint of the interval. The abscissas
x[0..n-1] are returned in descending order, with the corresponding weights in w[0..n-1]. The
arrays a and b are modified.
{

Int n=a.size();
if (n == 1) {

x[0]=x1;
w[0]=amu0;

} else { Compute pN �1 and pN �2 by recurrence.
Doub p=x1-a[0];
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Doub pm1=1.0;
Doub p1=p;
for (Int i=1;i<n-1;i++) {

p=(x1-a[i])*p1-b[i]*pm1;
pm1=p1;
p1=p;

}
a[n-1]=x1-b[n-1]*pm1/p; Equation (4.6.34).
gaucof(a,b,amu0,x,w);

}
}

An N -point Gauss-Lobatto rule has the form of equation (4.6.1) where x1 D a, xN D b
(both finite). This time you modify the entries aN �1 and bN �1 in equation (4.6.27) by solving
two linear equations:

"

pN �1.x1/ pN �2.x1/

pN �1.xN / pN �2.xN /

#"

a0
N �1

b0
N �1

#

D
"

x1pN �1.x1/

xN pN �1.xN /

#

(4.6.35)

void lobatto(VecDoub_IO &a, VecDoub_IO &b, const Doub amu0, const Doub x1,gauss wgts2.h
const Doub xn, VecDoub_O &x, VecDoub_O &w)

Computes the abscissas and weights for a Gauss-Lobatto quadrature formula. On input, the
vectors a[0..n-1] and b[0..n-1] are the coefficients of the recurrence relation for the set of
monic orthogonal polynomials corresponding to the weight function. (b[0] is not referenced.)

The quantity �0 �
R b

a W.x/ dx is input as amu0. x1 amd xn are input as the endpoints of
the interval. The abscissas x[0..n-1] are returned in descending order, with the corresponding
weights in w[0..n-1]. The arrays a and b are modified.
{

Doub det,pl,pr,p1l,p1r,pm1l,pm1r;
Int n=a.size();
if (n <= 1)

throw("n must be bigger than 1 in lobatto");
pl=x1-a[0]; Compute pN �1 and pN �2 at x1 and xN by recur-

rence.pr=xn-a[0];
pm1l=1.0;
pm1r=1.0;
p1l=pl;
p1r=pr;
for (Int i=1;i<n-1;i++) {

pl=(x1-a[i])*p1l-b[i]*pm1l;
pr=(xn-a[i])*p1r-b[i]*pm1r;
pm1l=p1l;
pm1r=p1r;
p1l=pl;
p1r=pr;

}
det=pl*pm1r-pr*pm1l; Solve equation (4.6.35).
a[n-1]=(x1*pl*pm1r-xn*pr*pm1l)/det;
b[n-1]=(xn-x1)*pl*pr/det;
gaucof(a,b,amu0,x,w);

}

The second important extension of Gaussian quadrature is the Gauss-Kronrod

formulas. For ordinary Gaussian quadrature formulas, as N increases, the sets of

abscissas have no points in common. This means that if you compare results with

increasing N as a way of estimating the quadrature error, you cannot reuse the pre-

vious function evaluations. Kronrod [14] posed the problem of searching for optimal

sequences of rules, each of which reuses all abscissas of its predecessor. If one starts

with N D m, say, and then adds n new points, one has 2n C m free parameters: the
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n new abscissas and weights, and m new weights for the fixed previous abscissas.

The maximum degree of exactness one would expect to achieve would therefore be

2n C m � 1. The question is whether this maximum degree of exactness can actually

be achieved in practice, when the abscissas are required to all lie inside .a; b/. The

answer to this question is not known in general.

Kronrod showed that if you choose n D m C 1, an optimal extension can

be found for Gauss-Legendre quadrature. Patterson [15] showed how to compute

continued extensions of this kind. Sequences such as N D 10; 21; 43; 87; : : : are

popular in automatic quadrature routines [16] that attempt to integrate a function until

some specified accuracy has been achieved.
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Stoer, J., and Bulirsch, R. 2002, Introduction to Numerical Analysis, 3rd ed. (New York: Springer),
÷3.6.

4.7 Adaptive Quadrature

The idea behind adaptive quadrature is very simple. Suppose you have two

different numerical estimates I1 and I2 of the integral

I D
Z b

a

f .x/ dx (4.7.1)

Suppose I1 is more accurate. Use the relative difference between I1 and I2 as an

error estimate. If it is less than �, accept I1 as the answer. Otherwise divide the

interval Œa; b� into two subintervals,

I D
Z m

a

f .x/ dx C
Z b

m

f .x/ dx m D .a C b/=2 (4.7.2)

and compute the two integrals independently. For each one, compute an I1 and I2,

estimate the error, and continue subdividing if necessary. Dividing any given subin-

terval stops when its contribution to � is sufficiently small. (Obviously recursion will

be a good way to implement this algorithm.)

The most important criterion for an adaptive quadrature routine is reliability: If

you request an accuracy of 10�6, you would like to be sure that the answer is at least

that good. From a theoretical point of view, however, it is impossible to design an

adaptive quadrature routine that will work for all possible functions. The reason is

simple: A quadrature is based on the value of the integrand f .x/ at a finite set of

points. You can alter the function at all the other points in an arbitrary way without

affecting the estimate your algorithm returns, while the true value of the integral

changes unpredictably. Despite this point of principle, however, in practice good

routines are reliable for a high fraction of functions they encounter. Our favorite

routine is one proposed by Gander and Gautschi [1], which we now describe. It is

relatively simple, yet scores well on reliability and efficiency.

A key component of a good adaptive algorithm is the termination criterion. The

usual criterion

jI1 � I2j < �jI1j (4.7.3)

is problematic. In the neighborhood of a singularity, I1 and I2 might never agree

to the requested tolerance, even if it’s not particularly small. Instead, you need to

somehow come up with an estimate of the whole integral I of equation (4.7.1). Then

you can terminate when the error in I1 is negligible compared to the whole integral:

jI1 � I2j < �jIs j (4.7.4)

where Is is the estimate of I . Gander and Gautschi implement this test by writing

if (is + (i1-i2) == is)

which is equivalent to setting � to the machine precision. However, modern op-

timizing compilers have become too good at recognizing that this is algebraically

equivalent to


