
N
u

m
e

ric
a

l
R

e
c
ip

e
s
:

T
h

e
A

rt
o

f
S

c
ie

n
tifi

c
C

o
m

p
u

tin
g

,
T

h
ird

E
d

itio
n

,
b
y

W
.H

.
P

re
s
s
,

S
.A

.
T
e

u
k
o

ls
k
y,

W
.T

.
V

e
tte

rlin
g

,
a

n
d

B
.P

.
F

la
n

n
e

ry.
V

e
rs

io
n

3
.0

4
(2

0
1

1
).

T
e
x
t

is
C

o
p
y
rig

h
t

c
1

9
8

8
-2

0
0

7
b
y

C
a

m
b

rid
g

e
U

n
ive

rs
ity

P
re

s
s
.

C
o

m
p

u
te

r
s
o

u
rc

e
c
o

d
e

is
C

o
p
y
rig

h
t

c
1

9
8

7
-2

0
0

7
b
y

N
u

m
e

ric
a

l
R

e
c
ip

e
s

S
o

ftw
a

re
.

H
a

rd
c
o
ve

r
b

o
o

k
IS

B
N

9
7

8
-0

-5
2

1
-8

8
0

6
8

-8
is

p
u

b
lis

h
e

d
b
y

C
a

m
b

rid
g

e
U

n
ive

rs
ity

P
re

s
s
,

h
ttp

://w
w

w
.c

a
m

b
rid

g
e
.o

rg
.

T
h

is
e

le
c
tro

n
ic

e
d

itio
n

is
p

u
b
lis

h
e

d
b
y

N
u

m
e

ric
a

l
R

e
c
ip

e
s

S
o

ftw
a

re
,

h
ttp

://n
u

m
e

ric
a

l.re
c
ip

e
s
.

P
e

rm
is

s
io

n
is

g
ra

n
te

d
fo

r
a

u
th

o
riz

e
d

s
u

b
s
c
rib

e
rs

to
m

a
k
e

o
n

e
p

a
p

e
r

c
o

p
y

fo
r

th
e

ir
o
w

n
p

e
rs

o
n

a
lu

s
e
.

F
u

rth
e

r
re

p
ro

d
u

c
tio

n
,
o

r
a

n
y

c
o

p
y
in

g
o

f
m

a
c
h

in
e

-re
a

d
a

b
le

fi
le

s
(in

c
lu

d
in

g
th

is
o

n
e

)
to

a
n
y

p
u

b
lic

s
e

rve
r

c
o

m
p

u
te

r,
is

s
tric

tly
p

ro
h

ib
ite

d
.

18.1 The Shooting Method 959

Eggleton, P.P. 1971, “The Evolution of Low Mass Stars,” Monthly Notices of the Royal Astronom-

ical Society, vol. 151, pp. 351–364.

London, R.A., and Flannery, B.P. 1982, “Hydrodynamics of X-Ray Induced Stellar Winds,” As-

trophysical Journal, vol. 258, pp. 260–269.

Stoer, J., and Bulirsch, R. 2002, Introduction to Numerical Analysis, 3rd ed. (New York: Springer),

÷7.3 – ÷7.4.

18.1 The Shooting Method

In this section we discuss “pure” shooting, where the integration proceeds from

x1 to x2, and we try to match boundary conditions at the end of the integration.

In the next section, we describe shooting to an intermediate fitting point, where the

solution to the equations and boundary conditions is found by launching “shots”

from both sides of the interval and trying to match continuity conditions at some

intermediate point.

Our implementation of the shooting method exactly implements multidimen-

sional, globally convergent Newton-Raphson (÷9.7). It seeks to zero n2 functions

of n2 variables. The functions are obtained by integrating N differential equations

from x1 to x2. Let us see how this works.

At the starting point x1 there are N starting values yi to be specified, but subject

to n1 conditions. Therefore there are n2 D N � n1 freely specifiable starting values.

Let us imagine that these freely specifiable values are the components of a vector V

that lives in a vector space of dimension n2. Then you, the user, knowing the func-

tional form of the boundary conditions (18.0.2), can write a function or functor that

generates a complete set of N starting values y , satisfying the boundary conditions

at x1, from an arbitrary vector value of V in which there are no restrictions on the n2

component values. In other words, (18.0.2) converts to a prescription

yi .x1/ D yi .x1I V0; : : : ; Vn2�1/ i D 0; : : : ; N � 1 (18.1.1)

In the routine Shoot below, the function or functor that implements (18.1.1) will

be called load, but you can pass it as an argument to the routine with any name of

your choosing.

Notice that the components of V might be exactly the values of certain “free”

components of y , with the other components of y determined by the boundary con-

ditions. Alternatively, the components of V might parametrize the solutions that

satisfy the starting boundary conditions in some other convenient way. Boundary

conditions often impose algebraic relations among the yi , rather than specific values

for each of them. Using some auxiliary set of parameters often makes it easier to

“solve” the boundary relations for a consistent set of yi ’s. It makes no difference

which way you go, as long as your vector space of V ’s generates (through 18.1.1) all

allowed starting vectors y .

Given a particular V , a particular y.x1/ is thus generated. It can then be turned

into a y.x2/ by integrating the ODEs to x2 as an initial value problem (e.g., using

Chapter 17’s Odeint). Now, at x2, let us define a discrepancy vector F , also of

dimension n2, whose components measure how far we are from satisfying the n2

boundary conditions at x2 (18.0.3). Simplest of all is just to use the right-hand sides

960 Chapter 18. Two-Point Boundary Value Problems

of (18.0.3),

Fk D B2k.x2; y/ k D 0; : : : ; n2 � 1 (18.1.2)

As in the case of V , however, you can use any other convenient parametrization,

as long as your space of F’s spans the space of possible discrepancies from the

desired boundary conditions, with all components of F equal to zero if and only if

the boundary conditions at x2 are satisfied. Below, you will be asked to supply a

user-written function or functor that uses (18.0.3) to convert an N -vector of ending

values y.x2/ into an n2-vector of discrepancies F . Inside Shoot, this function is

called score.

Now, as far as Newton-Raphson is concerned, we are nearly in business. We

want to find a vector value of V that zeros the vector value of F . We do this by

invoking the globally convergent Newton’s method implemented in the routine newt

of ÷9.7. Recall that the heart of Newton’s method involves solving the set of n2 linear

equations

J � ıV D �F (18.1.3)

and then adding the correction back,

V new
D V old

C ıV (18.1.4)

In (18.1.3), the Jacobian matrix J has components given by

Jij D
@Fi

@Vj

(18.1.5)

It is not feasible to compute these partial derivatives analytically. Rather, each re-

quires a separate integration of the N ODEs, followed by the evaluation of

@Fi

@Vj

�
Fi .V0; : : : ; Vj C �Vj ; : : :/ � Fi .V0; : : : ; Vj ; : : :/

�Vj

(18.1.6)

This is done automatically for you in the functor NRfdjac that comes with newt. The

only input to newt that you have to provide is the routine vecfunc that calculates

F by integrating the ODEs. Here is the appropriate routine, a functor called Shoot,

that is to be passed as the actual argument in newt:

template <class L, class R, class S>shoot.h
struct Shoot {
Functor for use with newt to solve a two-point boundary value problem by shooting.

Int nvar; Number of coupled ODEs.
Doub x1,x2; Start and end points.
L &load; Supplies initial values for ODEs from v[0..n2-1].
R &d; Supplies derivative information to the ODE integrator.
S &score; Returns the n2 functions that ought to be zero to satisfy

the boundary conditions at x2.Doub atol,rtol;
Doub h1,hmin;
VecDoub y;
Shoot(Int nvarr, Doub xx1, Doub xx2, L &loadd, R &dd, S &scoree) :

nvar(nvarr), x1(xx1), x2(xx2), load(loadd), d(dd),
score(scoree), atol(1.0e-14), rtol(atol), hmin(0.0), y(nvar) {}

Routine for use with newt to solve a two-point boundary value problem for nvar coupled
ODEs by shooting from x1 to x2. Initial values for the nvar ODEs at x1 are generated
from the n2 input coefficients v[0..n2-1], using the user-supplied routine load.
VecDoub operator() (VecDoub_I &v) {
This is the functor used by newt. It integrates the ODEs to x2 using an eighth-order Runge-
Kutta method with absolute and relative tolerances atol and rtol, initial stepsize h1, and

18.1 The Shooting Method 961

minimum stepsize hmin. At x2 it calls the user-supplied routine score and returns the
n2 functions that ought to be zero. newt uses a globally convergent Newton’s method to
adjust the values of v until the returned functions are in fact zero.

h1=(x2-x1)/100.0;
y=load(x1,v);
Output out; No output generated by Odeint.
Odeint<StepperDopr853<R> > integ(y,x1,x2,atol,rtol,h1,hmin,out,d);
integ.integrate();
return score(x2,y);

}
};

Note that Shoot is templated on the load, right-hand side for Odeint, and score

routines. In practice, you will almost always want to write these as functors rather

than functions. This makes communicating the various parameters in the problem

easy — just pass them as parameters in the constructors.

For some problems the initial stepsize �V might depend sensitively upon the

initial conditions. It is straightforward to alter load to compute a suggested stepsize

h1 as a member variable and feed it fist to Shoot and hence to NRfdjac when the

Shoot object is passed to newt.

A complete cycle of the shooting method thus requires n2 C 1 integrations of

the N coupled ODEs: one integration to evaluate the current degree of mismatch,

and n2 for the partial derivatives. Each new cycle requires a new round of n2 C 1

integrations. This illustrates the enormous extra effort involved in solving two-point

boundary value problems compared with initial value problems.

If the differential equations are linear, then only one complete cycle is required,

since (18.1.3) – (18.1.4) should take us right to the solution. A second round can be

useful, however, in mopping up some (never all) of the roundoff error.

As given here, Shoot uses the high-efficiency eighth-order Runge-Kutta method

of ÷17.2 to integrate the ODEs, but any of the other methods of Chapter 17 could just

as well be used.

You, the user, must supply Shoot with: (i) a function or functor load(x1,v)

that returns the n-vector y[0..n-1] (satisfying the starting boundary conditions, of

course), given the freely specifiable variables of v[0..n2-1] at the initial point x1;

(ii) a function or functor score(x2,y) that returns the discrepancy vector f[0..

n2-1] of the ending boundary conditions, given the vector y[0..n-1] at the end-

point x2; (iii) a starting vector v[0..n2-1]; (iv) a function or functor, called d in

the routine, for the ODE integration; and other obvious parameters as described in

the header comment above.

In ÷18.4 we give a sample program illustrating how to use Shoot.

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington, DC:

Mathematical Association of America).

Keller, H.B. 1968, Numerical Methods for Two-Point Boundary-Value Problems; reprinted 1991

(New York: Dover).

