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Two-Point Boundary
Value Problems

CHAPTER 18

18.0 Introduction

When ordinary differential equations are required to satisfy boundary condi-

tions at more than one value of the independent variable, the resulting problem is

called a two-point boundary value problem. As the terminology indicates, the most

common case by far is where boundary conditions are supposed to be satisfied at

two points — usually the starting and ending values of the integration. However,

the phrase “two-point boundary value problem” is also used loosely to include more

complicated cases, e.g., where some conditions are specified at endpoints, others at

interior (usually singular) points.

The crucial distinction between initial value problems (Chapter 17) and two-

point boundary value problems (this chapter) is that in the former case we are able to

start an acceptable solution at its beginning (initial values) and just march it along by

numerical integration to its end (final values), while in the present case the boundary

conditions at the starting point do not determine a unique solution to start with —

and a “random” choice among the solutions that satisfy these (incomplete) starting

boundary conditions is almost certain not to satisfy the boundary conditions at the

other specified point(s).

It should not surprise you that iteration is in general required to meld these spa-

tially scattered boundary conditions into a single global solution of the differential

equations. For this reason, two-point boundary value problems require considerably

more effort to solve than do initial value problems. You have to integrate your dif-

ferential equations over the interval of interest, or perform an analogous “relaxation”

procedure (see below), at least several, and sometimes very many, times. Only in the

special case of linear differential equations can you say in advance just how many

such iterations will be required.

The “standard” two-point boundary value problem has the following form: We

desire the solution to a set of N coupled first-order ordinary differential equations,

satisfying n1 boundary conditions at the starting point x1 and a remaining set of

n2 D N � n1 boundary conditions at the final point x2. (Recall that all differen-

tial equations of order higher than first can be written as coupled sets of first-order

955
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required

boundary

value

desired

boundary

value

1

3

2

y

x

Figure 18.0.1. Shooting method (schematic). Trial integrations that satisfy the boundary condition at one

endpoint are “launched.” The discrepancies from the desired boundary condition at the other endpoint are

used to adjust the starting conditions, until boundary conditions at both endpoints are ultimately satisfied.

equations; cf. ÷17.0.)

The differential equations are

dyi .x/

dx
D gi .x; y0; y1; : : : ; yN �1/ i D 0; 1; : : : ; N � 1 (18.0.1)

At x1, the solution is supposed to satisfy

B1j .x1; y0; y1; : : : ; yN �1/ D 0 j D 0; : : : ; n1 � 1 (18.0.2)

while at x2, it is supposed to satisfy

B2k.x2; y0; y1; : : : ; yN �1/ D 0 k D 0; : : : ; n2 � 1 (18.0.3)

There are two distinct classes of numerical methods for solving two-point bound-

ary value problems. In the shooting method (÷18.1) we choose values for all of

the dependent variables at one boundary. These values must be consistent with any

boundary conditions for that boundary, but otherwise are arranged to depend on arbi-

trary free parameters whose values we initially “randomly” guess. We then integrate

the ODEs by initial value methods, arriving at the other boundary (and/or any interior

points with boundary conditions specified). In general, we find discrepancies from

the desired boundary values there. Now we have a multidimensional root-finding

problem, as was treated in ÷9.6 and ÷9.7: Find the adjustment of the free parameters

at the starting point that zeros the discrepancies at the other boundary point(s). If

we liken integrating the differential equations to following the trajectory of a shot

from gun to target, then picking the initial conditions corresponds to aiming (see

Figure 18.0.1). The shooting method provides a systematic approach to taking a set

of “ranging” shots that allow us to improve our “aim” systematically.

As another variant of the shooting method (÷18.2), we can guess unknown free

parameters at both ends of the domain, integrate the equations to a common mid-

point, and seek to adjust the guessed parameters so that the solution joins “smoothly”

at the fitting point. In all shooting methods, trial solutions satisfy the differential
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required

boundary

value

required

boundary

value

initial guess
1st iteration

2nd iteration

true solution

Figure 18.0.2. Relaxation method (schematic). An initial solution is guessed that approximately satisfies

the differential equation and boundary conditions. An iterative process adjusts the function to bring it into

close agreement with the true solution.

equations “exactly” (or as exactly as we care to make our numerical integration), but

the trial solutions come to satisfy the required boundary conditions only after the

iterations are finished.

Relaxation methods use a different approach. The differential equations are re-

placed by finite difference equations on a mesh of points that covers the range of

the integration. A trial solution consists of values for the dependent variables at

each mesh point, not satisfying the desired finite difference equations, nor neces-

sarily even satisfying the required boundary conditions. The iteration, now called

relaxation, consists of adjusting all the values on the mesh so as to bring them into

successively closer agreement with the finite difference equations and, simultane-

ously, with the boundary conditions (see Figure 18.0.2). For example, if the problem

involves three coupled equations and a mesh of 100 points, we must guess and im-

prove 300 variables representing the solution.

With all this adjustment, you may be surprised that relaxation is ever an effi-

cient method, but (for the right problems) it really is! Relaxation works better than

shooting when the boundary conditions are especially delicate or subtle, or where

they involve complicated algebraic relations that cannot easily be solved in closed

form. Relaxation works best when the solution is smooth and not highly oscillatory.

Such oscillations would require many grid points for accurate representation. The

number and position of required points may not be known a priori. Shooting meth-

ods are usually preferred in such cases, because their variable stepsize integrations

adjust naturally to a solution’s peculiarities.

Relaxation methods are often preferred when the ODEs have extraneous solu-

tions that, while not appearing in the final solution satisfying all boundary conditions,

may wreak havoc on the initial value integrations required by shooting. The typical

case is that of trying to maintain a dying exponential in the presence of growing

exponentials.

Good initial guesses are the secret of efficient relaxation methods. Often one

has to solve a problem many times, each time with a slightly different value of some

parameter. In that case, the previous solution is usually a good initial guess when the
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parameter is changed, and relaxation will work well.

Until you have enough experience to make your own judgment between the two

methods, you might wish to follow the advice of your authors, who are notorious

computer gunslingers: We always shoot first, and only then relax.

18.0.1 Problems Reducible to the Standard Boundary
Problem

There are two important problems that can be reduced to the standard boundary

value problem described by equations (18.0.1) – (18.0.3). The first is the eigenvalue

problem for differential equations. Here the right-hand side of the system of differ-

ential equations depends on a parameter �,

dyi .x/

dx
D gi .x; y0; : : : ; yN �1; �/ (18.0.4)

and one has to satisfy N C 1 boundary conditions instead of just N . The problem

is overdetermined and in general there is no solution for arbitrary values of �. For

certain special values of �, the eigenvalues, equation (18.0.4) does have a solution.

We reduce this problem to the standard case by introducing a new dependent

variable

yN � � (18.0.5)

and another differential equation

dyN

dx
D 0 (18.0.6)

An example of this trick is given in ÷18.4.

The other case that can be put in the standard form is a free boundary problem.

Here only one boundary abscissa x1 is specified, while the other boundary x2 is to

be determined so that the system (18.0.1) has a solution satisfying a total of N C 1

boundary conditions. Here we again add an extra constant dependent variable:

yN � x2 � x1 (18.0.7)

dyN

dx
D 0 (18.0.8)

We also define a new independent variable t by setting

x � x1 � tyN ; 0 � t � 1 (18.0.9)

The system of N C 1 differential equations for dyi=dt is now in the standard form,

with t varying between the known limits 0 and 1.
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18.1 The Shooting Method

In this section we discuss “pure” shooting, where the integration proceeds from

x1 to x2, and we try to match boundary conditions at the end of the integration.

In the next section, we describe shooting to an intermediate fitting point, where the

solution to the equations and boundary conditions is found by launching “shots”

from both sides of the interval and trying to match continuity conditions at some

intermediate point.

Our implementation of the shooting method exactly implements multidimen-

sional, globally convergent Newton-Raphson (÷9.7). It seeks to zero n2 functions

of n2 variables. The functions are obtained by integrating N differential equations

from x1 to x2. Let us see how this works.

At the starting point x1 there are N starting values yi to be specified, but subject

to n1 conditions. Therefore there are n2 D N � n1 freely specifiable starting values.

Let us imagine that these freely specifiable values are the components of a vector V

that lives in a vector space of dimension n2. Then you, the user, knowing the func-

tional form of the boundary conditions (18.0.2), can write a function or functor that

generates a complete set of N starting values y , satisfying the boundary conditions

at x1, from an arbitrary vector value of V in which there are no restrictions on the n2

component values. In other words, (18.0.2) converts to a prescription

yi .x1/ D yi .x1I V0; : : : ; Vn2�1/ i D 0; : : : ; N � 1 (18.1.1)

In the routine Shoot below, the function or functor that implements (18.1.1) will

be called load, but you can pass it as an argument to the routine with any name of

your choosing.

Notice that the components of V might be exactly the values of certain “free”

components of y , with the other components of y determined by the boundary con-

ditions. Alternatively, the components of V might parametrize the solutions that

satisfy the starting boundary conditions in some other convenient way. Boundary

conditions often impose algebraic relations among the yi , rather than specific values

for each of them. Using some auxiliary set of parameters often makes it easier to

“solve” the boundary relations for a consistent set of yi ’s. It makes no difference

which way you go, as long as your vector space of V ’s generates (through 18.1.1) all

allowed starting vectors y .

Given a particular V , a particular y.x1/ is thus generated. It can then be turned

into a y.x2/ by integrating the ODEs to x2 as an initial value problem (e.g., using

Chapter 17’s Odeint). Now, at x2, let us define a discrepancy vector F , also of

dimension n2, whose components measure how far we are from satisfying the n2

boundary conditions at x2 (18.0.3). Simplest of all is just to use the right-hand sides


