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for (Int i=0;i<n;i++) yt[i]=y[i]+hh*dydx[i]; First step.
derivs(xh,yt,dyt); Second step.
for (Int i=0;i<n;i++) yt[i]=y[i]+hh*dyt[i];
derivs(xh,yt,dym); Third step.
for (Int i=0;i<n;i++) {

yt[i]=y[i]+h*dym[i];
dym[i] += dyt[i];

}
derivs(x+h,yt,dyt); Fourth step.
for (Int i=0;i<n;i++) Accumulate increments with

proper weights.yout[i]=y[i]+h6*(dydx[i]+dyt[i]+2.0*dym[i]);
}

The Runge-Kutta method treats every step in a sequence of steps in an identical

manner. Prior behavior of a solution is not used in its propagation. This is mathemat-

ically proper, since any point along the trajectory of an ordinary differential equation

can serve as an initial point. The fact that all steps are treated identically also makes

it easy to incorporate Runge-Kutta into relatively simple “driver” schemes.

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions (Washington:

National Bureau of Standards); reprinted 1968 (New York: Dover); online at

http://numerical.recipes/aands, ÷25.5.[1]

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood

Cliffs, NJ: Prentice-Hall), Chapter 2.[2]

Shampine, L.F., and Watts, H.A. 1977, “The Art of Writing a Runge-Kutta Code, Part I,” in Math-

ematical Software III, J.R. Rice, ed. (New York: Academic Press), pp. 257–275; 1979,

“The Art of Writing a Runge-Kutta Code. II,” Applied Mathematics and Computation, vol. 5,

pp. 93–121.[3]

17.2 Adaptive Stepsize Control for

Runge-Kutta

A good ODE integrator should exert some adaptive control over its own progress,

making frequent changes in its stepsize. Usually the purpose of this adaptive stepsize

control is to achieve some predetermined accuracy in the solution with minimum

computational effort. Many small steps should tiptoe through treacherous terrain,

while a few great strides should speed through smooth uninteresting countryside.

The resulting gains in efficiency are not mere tens of percents or factors of two; they

can sometimes be factors of ten, a hundred, or more. Sometimes accuracy may be

demanded not directly in the solution itself, but in some related conserved quantity

that can be monitored.

Implementation of adaptive stepsize control requires that the stepping algorithm

signal information about its performance, most important, an estimate of its trunca-

tion error. In this section we will learn how such information can be obtained. Obvi-

ously, the calculation of this information will add to the computational overhead, but

the investment will generally be repaid handsomely.

With fourth-order Runge-Kutta, the most straightforward technique by far is

step doubling (see, e.g., [1]). We take each step twice, once as a full step, then,



17.2 Adaptive Stepsize Control for Runge-Kutta 911

independently, as two half-steps (see Figure 17.2.1). How much overhead is this,

say in terms of the number of evaluations of the right-hand sides? Each of the three

separate Runge-Kutta steps in the procedure requires 4 evaluations, but the single and

double sequences share a starting point, so the total is 11. This is to be compared not

to 4, but to 8 (the two half-steps), since — stepsize control aside — we are achieving

the accuracy of the smaller (half-) stepsize. The overhead cost is therefore a factor

1.375. What does it buy us?

Let us denote the exact solution for an advance from x to x C 2h by y.x C 2h/

and the two approximate solutions by y1 (one step 2h) and y2 (two steps each of size

h). Since the basic method is fourth order, the true solution and the two numerical

approximations are related by

y.x C 2h/ D y1 C .2h/5� C O.h6/ C : : :

y.x C 2h/ D y2 C 2.h5/� C O.h6/ C : : :
(17.2.1)

where, to order h5, the value � remains constant over the step. [Taylor series expan-

sion tells us the � is a number whose order of magnitude is y.5/.x/=5Š.] The first

expression in (17.2.1) involves .2h/5 since the stepsize is 2h, while the second ex-

pression involves 2.h5/ since the error on each step is h5�. The difference between

the two numerical estimates is a convenient indicator of truncation error,

� � y2 � y1 (17.2.2)

It is this difference that we shall endeavor to keep to a desired degree of accuracy,

neither too large nor too small. We do this by adjusting h.

It might also occur to you that, ignoring terms of order h6 and higher, we can

solve the two equations in (17.2.1) to improve our numerical estimate of the true

solution y.x C 2h/, namely,

y.x C 2h/ D y2 C
�

15
C O.h6/ (17.2.3)

This estimate is accurate to fifth order, one order higher than the original Runge-

Kutta steps (Richardson extrapolation again!). However, we can’t have our cake and

eat it too: (17.2.3) may be fifth-order accurate, but we have no way of monitoring its

truncation error. Higher order is not always higher accuracy! Use of (17.2.3) rarely

does harm, but we have no way of directly knowing whether it is doing any good.

Therefore we should use � as the error estimate and take as “gravy” any additional

accuracy gain derived from (17.2.3). In the technical literature, use of a procedure

like (17.2.3) is called “local extrapolation.”

Step doubling has been superseded by a more efficient stepsize adjustment al-

gorithm based on embedded Runge-Kutta formulas, originally invented by Merson

and popularized in a method of Fehlberg. An interesting fact about Runge-Kutta

formulas is that for orders M higher than four, more than M function evaluations

are required. This accounts for the popularity of the classical fourth-order method:

It seems to give the most bang for the buck. However, Fehlberg discovered a fifth-

order method with six function evaluations where another combination of the six

functions gives a fourth-order method. The difference between the two estimates

of y.x C h/ can then be used as an estimate of the truncation error to adjust the
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two small steps

big step

x

Figure 17.2.1. Step doubling as a means for adaptive stepsize control in fourth-order Runge-Kutta. Points

where the derivative is evaluated are shown as filled circles. The open circle represents the same deriva-

tives as the filled circle immediately above it, so the total number of evaluations is 11 per two steps.

Comparing the accuracy of the big step with the two small steps gives a criterion for adjusting the stepsize

on the next step, or for rejecting the current step as inaccurate.

stepsize. Since Fehlberg’s original formula, many other embedded Runge-Kutta for-

mulas have been found.

As an aside, the general question of how many function evaluations are required

for a Runge-Kutta method of a given order is still open. Order 5 requires 6 function

evaluations, order 6 requires 7, order 7 requires 9, order 8 requires 11. It is known

that for order M � 8, at least M C 3 evaluations are required. The highest order

explicitly constructed method so far is order 10, with 17 evaluations. The calculation

of the coefficients of these high-order methods is very complicated.

We will spend most of this section setting up an efficient fifth-order Runge-

Kutta method, coded in the routine StepperDopr5. This will allow us to explore

the various issues that have to be dealt with in any Runge-Kutta scheme. However,

ultimately you should not use this routine except for low accuracy requirements (.

10�3) or trivial problems. Use the more efficient higher-order Runge-Kutta code

StepperDopr853 or the Bulirsch-Stoer code StepperBS.

The general form of a fifth-order Runge-Kutta formula is

k1 D hf .xn; yn/

k2 D hf .xn C c2h; yn C a21k1/

� � �

k6 D hf .xn C c6h; yn C a61k1 C � � � C a65k5/

ynC1 D yn C b1k1 C b2k2 C b3k3 C b4k4 C b5k5 C b6k6 C O.h6/

(17.2.4)

The embedded fourth-order formula is

y�
nC1 D yn C b�

1 k1 C b�
2 k2 C b�

3 k3 C b�
4 k4 C b�

5 k5 C b�
6 k6 C O.h5/ (17.2.5)

and so the error estimate is

� � ynC1 � y�
nC1 D

6
X

iD1

.bi � b�
i /ki (17.2.6)

The particular values of the various constants that we favor are those found by Dor-

mand and Prince [2] and given in the table on the next page. These give a more

efficient method than Fehlberg’s original values, with better error properties.

We said that the Dormand-Prince method needs six function evaluations per

step, yet the table on the next page shows seven and the sums in equations (17.2.5)

and (17.2.6) should really go up to i D 7. What’s going on? The idea is to use



17.2 Adaptive Stepsize Control for Runge-Kutta 913

Dormand-Prince 5(4) Parameters for Embedded Runga-Kutta Method

i ci aij bi b�
i

1 35
384

5179
57600

2 1
5

1
5 0 0

3 3
10

3
40

9
40

500
1113

7571
16695

4 4
5

44
45 � 56

15
32
9

125
192

393
640

5 8
9

19372
6561 � 25360

2187
64448
6561 � 212

729 � 2187
6784 � 92097

339200

6 1 9017
3168 � 355

33
46732
5247

49
176 � 5103

18656
11
84

187
2100

7 1 35
384 0 500

1113
125
192 � 2187

6784
11
84 0 1

40

j D 1 2 3 4 5 6

ynC1 itself to provide a seventh stage. Because f .xn C h; ynC1/ has to be evaluated

anyway to start the next step, this costs nothing (unless the step is rejected because

the error is too big). This trick is called FSAL (first-same-as-last). You can see in

the table that the coefficients in the last row are the same as the bi column.

Now that we know, at least approximately, what our error is, we need to consider

how to keep it within desired bounds. We require

j�j D jynC1 � y�
nC1j � scale (17.2.7)

where

scale D atol C jyj rtol (17.2.8)

Here atol is the absolute error tolerance and rtol is the relative error tolerance.

(Practical detail: In a code, you use max.jynj; jynC1j/ for jyj in the above formula

in case one of them is close to zero.)

Our notation hides the fact that � is actually a vector of desired accuracies,

�i , one for each equation in the set of ODEs. In practice one takes some norm of

the vector �. While taking the maximum component value is fine (i.e., rescaling

the stepsize according to the needs of the “worst-offender” equation), we will use

the usual Euclidean norm. Also, while atol and rtol could be different for each

component of y, we will take them as constant. So define

err D

s

1

N

N �1
X

iD0

�

�i

scalei

�2

(17.2.9)

and accept the step if err � 1, otherwise reject it.

What is the relation between the scaled error err and h? According to (17.2.4)

– (17.2.5), � scales as h5 and hence so does err. If we take a step h1 and produce

an error err1, therefore, the step h0 that would have given some other value err0 is

readily estimated as

h0 D h1

ˇ

ˇ

ˇ

ˇ

err0

err1

ˇ

ˇ

ˇ

ˇ

1=5

(17.2.10)

Let err0 denote the desired error, which is 1 in an efficient integration. Then
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equation (17.2.10) is used in two ways: If err1 is larger than 1 in magnitude, the

equation tells how much to decrease the stepsize when we retry the present (failed)

step. If err1 is smaller than 1, on the other hand, then the equation tells how much

we can safely increase the stepsize for the next step. Local extrapolation means that

we use the fifth-order value ynC1, even though the error estimate actually applies to

the fourth-order value y�
nC1.

How is the quantity err related to some looser prescription like “get a solution

good to one part in 106”? That can be a subtle question, and it depends on exactly

what your application is. You may be dealing with a set of equations whose depen-

dent variables differ enormously in magnitude. In that case, you probably want to

use fractional errors, atol D 0, rtol D �, where � is the number like 10�6 or

whatever. On the other hand, you may have oscillatory functions that pass through

zero but are bounded by some maximum values. In that case you probably want to

set atol D rtol D �. This latter choice is the safest in general, and should usually

be your first choice.

Here is a more technical point. The error criteria mentioned thus far are “local,”

in that they bound the error of each step individually. In some applications you may

be unusually sensitive about a “global” accumulation of errors, from beginning to end

of the integration and in the worst possible case where the errors all are presumed

to add with the same sign. Then, the smaller the stepsize h, the more steps between

your starting and ending values of x. In such a case you might want to set scale

proportional to h, typically to something like

scale D �h � dydx[i] (17.2.11)

This enforces fractional accuracy � not on the values of y but (much more strin-

gently) on the increments to those values at each step. But now look back at (17.2.10).

The exponent 1=5 is no longer correct: When the stepsize is reduced from a too-large

value, the new predicted value h1 will fail to meet the desired accuracy when scale

is also altered to this new h1 value. Instead of 1=5, we must scale by the exponent

1=4 for things to work out.

Error control that tries to constrain the global error by setting the scale factor

proportional to h is called “error per unit step,” as opposed to the original “error per

step” method. As a point of principle, controlling the global error by controlling the

local error is very difficult. The global error at any point is the sum of the global error

up to the start of the last step plus the local error of that step. This cumulative nature

of the global error means it depends on things that cannot always be controlled,

like stability properties of the differential equation. Accordingly, we recommend the

straightforward “error per step” method in most cases. If you want to estimate the

global error of your solution, you have to integrate again with a reduced tolerance

and use the change in the solution as an estimate of the global error. This works if

the stepsize controller produces errors roughly proportional to the tolerance, which

is not always guaranteed.

Because our error estimates are not exact, but only accurate to the leading order

in h, we are advised to put in a safety factor S that is a few percent smaller than

unity. Equation (17.2.10) (with err0 D 1 and the subscripts 1 ! n and 0 ! n C 1)

is thus replaced by

hnC1 D Shn

�

1

errn

�1=5

(17.2.12)
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Moreover, experience shows that it is not wise to let the stepsize increase or decrease

too fast, and not to let the stepsize increase at all if the previous step was rejected. In

StepperDopr5, the stepsize cannot increase by more than a factor of 10 nor decrease

by more than a factor of 5 in a single step.

17.2.1 PI Stepsize Control

One situation in which the above stepsize controller has difficulty is when the

stepsize is being limited by the stability properties of the integration method, rather

than the accuracy of the individual steps. (We will see more about this in ÷17.5 on

stiff differential equations.) The stepsize increases slowly as successive steps are

accepted, until the method becomes unstable. The controller responds to the sudden

increase in the error by cutting the stepsize drastically, and the cycle repeats itself.

Similar problems can occur when the solution to the differential equation enters a

region with drastically different behavior than the previous region. A long sequence

of alternating accepted and rejected steps ensues. Since rejected steps are expensive,

it is worth improving the stepsize control.

The most effective way to do this seems to be to use ideas from control theory.

The integration routine and the differential equation play the role of the process, like

a chemical plant manufacturing a product. The stepsize h is the input and the error

estimate err is the output. (The numerical solution is also output, but it is not used

for stepsize control.) The controller is the stepsize control algorithm. It tries to hold

the error at the prescribed tolerance by varying the stepsize. Deriving an improved

stepsize controller from control theory ideas is beyond our scope here, so we will

introduce some basic concepts and then refer you to the literature for derivations and

a fuller explanation [6-8].

The standard stepsize controller (17.2.12), when expressed in the language of

control theory, is known as an integrating controller, with log h as the discrete con-

trol variable. This means that the control variable is obtained by “integrating” the

control error signal. It is well known in control theory that more stable control can

be achieved by adding an additional term proportional to the control error. This is

called a PI controller, where the P stands for proportional feedback and the I for

integral feedback. Instead of (17.2.12), the resulting algorithm takes the simple form

hnC1 D Shnerr
�˛
n err

ˇ
n�1 (17.2.13)

Typically ˛ and ˇ should be scaled as 1=k, where k is the exponent of h in err

(k D 5 for a fifth-order method). Setting ˛ D 1=k, ˇ D 0 recovers the classical

controller (17.2.12). Nonzero ˇ improves the stability but loses some efficiency for

“easy” parts of the solution. A good compromise [6] is to set

ˇ � 0:4=k; ˛ � 0:7=k D 1=k � 0:75ˇ (17.2.14)

17.2.2 Dense Output

Adaptive stepsize control means the algorithm marches along producing y val-

ues at x’s that it chooses itself. What if you want output at values that you specify?

The simplest option is just to integrate from one desired output point to the next. But

if you specify a lot of output points, this is inefficient: The code has to take steps
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based on where you want output, rather than the “natural” stepsizes it would like

to choose. High-order methods like to take large steps for smooth solutions, so the

problem is especially acute in this case.

The solution is to find an interpolation method that uses information produced

during the integration and is of an order comparable to the order of the method

so that full accuracy of the solution is preserved. This is called providing a dense

output method.

For example, any method has available y and dy=dx D f at the beginning and

end of the step. These four quantities specify a cubic interpolating polynomial:

y.xnC�h/ D .1��/ynC�ynC1C�.��1/Œ.1�2�/.ynC1�yn/C.��1/hfnC�hfnC1�

(17.2.15)

where 0 � � � 1. Evaluating this polynomial at any � in the interval gives a

value of y that is third-order accurate, as you can verify by Taylor expansion in h.

(Equation 17.2.15 is an example of Hermite interpolation, which uses both function

and derivative values.)

We are interested, however, in integration methods with order higher than three,

so higher-order dense output formulas are needed. The general approach for Runge-

Kutta methods is to regard the bi coefficients in (17.2.4) as polynomials in � instead

of constants. This defines a continuous solution,

y.xn C �h/ D yn C b1.�/k1 C b2.�/k2 C b3.�/k3 C b4.�/k4 C b5.�/k5 C b6.�/k6

(17.2.16)

and we require the polynomials bi .�/ to approximate the true solution to the required

order. Equation (17.2.15) is a special case of this.

The Dormand-Prince fifth-order method allows dense output of order four with-

out any further function evaluations. This is usually sufficient: The number of steps

to get to a typical point scales as 1=h, so the global error at that point is typically

O.h5/ (fourth order). (Fifth-order dense output, needed, for example, for full ac-

curacy in y0.xn C �h/, turns out to need two extra function evaluations per step.)

StepperDopr5 contains a dense output option based on the formulas in [3] as sim-

plified in [4].

Dense output simplifies problems where you don’t know in advance how far

to integrate. You want to locate the position xc where some condition is satisfied.

Examples include integrating the equations of stellar structure out from the center

of the star until the pressure goes to zero at the surface, or the study of limit cycles

when one integrates until the solution reaches the Poincaré section for the first time.

Write the condition as finding the zero of some function:

g .x; yi .x// D 0 (17.2.17)

Monitor g in the output routine. When g changes sign between two steps, use the

dense output routine to supply function values to your favorite root-finding routine,

such as bisection or Newton’s method.

17.2.3 Implementation

Here follows the implementation of the fifth-order Dormand-Prince method.
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template <class D> stepperdopr5.h
struct StepperDopr5 : StepperBase {
Dormand-Prince fifth-order Runge-Kutta step with monitoring of local truncation error to ensure
accuracy and adjust stepsize.

typedef D Dtype; Make the type of derivs available to Odeint.
VecDoub k2,k3,k4,k5,k6;
VecDoub rcont1,rcont2,rcont3,rcont4,rcont5;
VecDoub dydxnew;
StepperDopr5(VecDoub_IO &yy, VecDoub_IO &dydxx, Doub &xx,

const Doub atoll, const Doub rtoll, bool dens);
void step(const Doub htry,D &derivs);
void dy(const Doub h,D &derivs);
void prepare_dense(const Doub h,D &derivs);
Doub dense_out(const Int i, const Doub x, const Doub h);
Doub error();
struct Controller {

Doub hnext,errold;
bool reject;
Controller();
bool success(const Doub err, Doub &h);

};
Controller con;

};

The constructor simply invokes the base class instructor and initializes vari-

ables:

template <class D> stepperdopr5.h
StepperDopr5<D>::StepperDopr5(VecDoub_IO &yy,VecDoub_IO &dydxx,Doub &xx,

const Doub atoll,const Doub rtoll,bool dens) :
StepperBase(yy,dydxx,xx,atoll,rtoll,dens), k2(n),k3(n),k4(n),k5(n),k6(n),
rcont1(n),rcont2(n),rcont3(n),rcont4(n),rcont5(n),dydxnew(n) {

Input to the constructor are the dependent variable y[0..n-1] and its derivative dydx[0..n-1]
at the starting value of the independent variable x. Also input are the absolute and relative
tolerances, atol and rtol, and the boolean dense, which is true if dense output is required.

EPS=numeric_limits<Doub>::epsilon();
}

The step method is the actual stepper. It attempts a step, invokes the controller

to decide whether to accept the step or try again with a smaller stepsize, and sets up

the coefficients in case dense output is needed between x and x C h.

template <class D> stepperdopr5.h
void StepperDopr5<D>::step(const Doub htry,D &derivs) {
Attempts a step with stepsize htry. On output, y and x are replaced by their new values, hdid
is the stepsize that was actually accomplished, and hnext is the estimated next stepsize.

Doub h=htry; Set stepsize to the initial trial value.
for (;;) {

dy(h,derivs); Take a step.
Doub err=error(); Evaluate accuracy.
if (con.success(err,h)) break; Step rejected. Try again with reduced h set

by controller.if (abs(h) <= abs(x)*EPS)
throw("stepsize underflow in StepperDopr5");

}
if (dense) Step succeeded. Compute coefficients for dense

output.prepare_dense(h,derivs);
dydx=dydxnew; Reuse last derivative evaluation for next step.
y=yout;
xold=x; Used for dense output.
x += (hdid=h);
hnext=con.hnext;

}
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The algorithm routine dy does the six steps plus the seventh FSAL step, and

computes ynC1 and the error �.

template <class D>stepperdopr5.h
void StepperDopr5<D>::dy(const Doub h,D &derivs) {
Given values for n variables y[0..n-1] and their derivatives dydx[0..n-1] known at x, use the
fifth-order Dormand-Prince Runge-Kutta method to advance the solution over an interval h and
store the incremented variables in yout[0..n-1]. Also store an estimate of the local truncation
error in yerr using the embedded fourth-order method.

static const Doub c2=0.2,c3=0.3,c4=0.8,c5=8.0/9.0,a21=0.2,a31=3.0/40.0,
a32=9.0/40.0,a41=44.0/45.0,a42=-56.0/15.0,a43=32.0/9.0,a51=19372.0/6561.0,
a52=-25360.0/2187.0,a53=64448.0/6561.0,a54=-212.0/729.0,a61=9017.0/3168.0,
a62=-355.0/33.0,a63=46732.0/5247.0,a64=49.0/176.0,a65=-5103.0/18656.0,
a71=35.0/384.0,a73=500.0/1113.0,a74=125.0/192.0,a75=-2187.0/6784.0,
a76=11.0/84.0,e1=71.0/57600.0,e3=-71.0/16695.0,e4=71.0/1920.0,
e5=-17253.0/339200.0,e6=22.0/525.0,e7=-1.0/40.0;
VecDoub ytemp(n);
Int i;
for (i=0;i<n;i++) First step.

ytemp[i]=y[i]+h*a21*dydx[i];
derivs(x+c2*h,ytemp,k2); Second step.
for (i=0;i<n;i++)

ytemp[i]=y[i]+h*(a31*dydx[i]+a32*k2[i]);
derivs(x+c3*h,ytemp,k3); Third step.
for (i=0;i<n;i++)

ytemp[i]=y[i]+h*(a41*dydx[i]+a42*k2[i]+a43*k3[i]);
derivs(x+c4*h,ytemp,k4); Fourth step.
for (i=0;i<n;i++)

ytemp[i]=y[i]+h*(a51*dydx[i]+a52*k2[i]+a53*k3[i]+a54*k4[i]);
derivs(x+c5*h,ytemp,k5); Fifth step.
for (i=0;i<n;i++)

ytemp[i]=y[i]+h*(a61*dydx[i]+a62*k2[i]+a63*k3[i]+a64*k4[i]+a65*k5[i]);
Doub xph=x+h;
derivs(xph,ytemp,k6); Sixth step.
for (i=0;i<n;i++) Accumulate increments with proper weights.

yout[i]=y[i]+h*(a71*dydx[i]+a73*k3[i]+a74*k4[i]+a75*k5[i]+a76*k6[i]);
derivs(xph,yout,dydxnew); Will also be first evaluation for next step.
for (i=0;i<n;i++) {

Estimate error as difference between fourth- and fifth-order methods.
yerr[i]=h*(e1*dydx[i]+e3*k3[i]+e4*k4[i]+e5*k5[i]+e6*k6[i]+e7*dydxnew[i]);

}
}

The routine prepare_dense uses the coefficients of [4] to set up the dense out-

put quantities. Our coding of the dense output is closely based on that of the Fortran

code DOPRI5 of [5].

template <class D>stepperdopr5.h
void StepperDopr5<D>::prepare_dense(const Doub h,D &derivs) {
Store coefficients of interpolating polynomial for dense output in rcont1...rcont5.

VecDoub ytemp(n);
static const Doub d1=-12715105075.0/11282082432.0,
d3=87487479700.0/32700410799.0, d4=-10690763975.0/1880347072.0,
d5=701980252875.0/199316789632.0, d6=-1453857185.0/822651844.0,
d7=69997945.0/29380423.0;
for (Int i=0;i<n;i++) {

rcont1[i]=y[i];
Doub ydiff=yout[i]-y[i];
rcont2[i]=ydiff;
Doub bspl=h*dydx[i]-ydiff;
rcont3[i]=bspl;
rcont4[i]=ydiff-h*dydxnew[i]-bspl;
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rcont5[i]=h*(d1*dydx[i]+d3*k3[i]+d4*k4[i]+d5*k5[i]+d6*k6[i]+
d7*dydxnew[i]);

}
}

The next routine, dense_out, uses the coefficients stored by the previous rou-

tine to evaluate the solution at an arbitrary point.

template <class D> stepperdopr5.h
Doub StepperDopr5<D>::dense_out(const Int i,const Doub x,const Doub h) {
Evaluate interpolating polynomial for y[i] at location x, where xold � x � xold C h.

Doub s=(x-xold)/h;
Doub s1=1.0-s;
return rcont1[i]+s*(rcont2[i]+s1*(rcont3[i]+s*(rcont4[i]+s1*rcont5[i])));

}

The error routine converts � into the scaled quantity err.

template <class D> stepperdopr5.h
Doub StepperDopr5<D>::error() {
Use yerr to compute norm of scaled error estimate. A value less than one means the step was
successful.

Doub err=0.0,sk;
for (Int i=0;i<n;i++) {

sk=atol+rtol*MAX(abs(y[i]),abs(yout[i]));
err += SQR(yerr[i]/sk);

}
return sqrt(err/n);

}

Finally, the controller tests whether err � 1 and adjusts the stepsize. The

default setting is beta D 0 (no PI control). Set beta to 0.04 or 0.08 to turn on PI

control.

template <class D> stepperdopr5.h
StepperDopr5<D>::Controller::Controller() : reject(false), errold(1.0e-4) {}
Step size controller for fifth-order Dormand-Prince method.
template <class D>
bool StepperDopr5<D>::Controller::success(const Doub err,Doub &h) {
Returns true if err � 1, false otherwise. If step was successful, sets hnext to the estimated
optimal stepsize for the next step. If the step failed, reduces h appropriately for another try.

static const Doub beta=0.0,alpha=0.2-beta*0.75,safe=0.9,minscale=0.2,
maxscale=10.0;

Set beta to a nonzero value for PI control. beta D 0:04–0.08 is a good default.
Doub scale;
if (err <= 1.0) { Step succeeded. Compute hnext.

if (err == 0.0)
scale=maxscale;

else { PI control if beta ¤ 0.
scale=safe*pow(err,-alpha)*pow(errold,beta);
if (scale<minscale) scale=minscale; Ensure minscale � hnext=h � maxscale.
if (scale>maxscale) scale=maxscale;

}
if (reject) Don’t let step increase if last one was re-

jected.hnext=h*MIN(scale,1.0);
else

hnext=h*scale;
errold=MAX(err,1.0e-4); Bookkeeping for next call.
reject=false;
return true;

} else { Truncation error too large, reduce stepsize.
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scale=MAX(safe*pow(err,-alpha),minscale);
h *= scale;
reject=true;
return false;

}
}

A warning: Don’t be too greedy in specifying atol and rtol. The punishment

for excessive greediness is interesting and worthy of Gilbert and Sullivan’s Mikado:

The routine can always achieve an apparent zero error by making the stepsize so

small that quantities of order hy0 add to quantities of order y as if they were zero.

Then the routine chugs happily along taking infinitely many infinitesimal steps and

never changing the dependent variables one iota. (On a supercomputer, you guard

against this catastrophic loss of your time allocation by signaling on abnormally

small stepsizes or on the dependent variable vector remaining unchanged from step

to step. On a desktop computer, you guard against it by not taking too long a lunch

hour while the program is running.)

17.2.4 Dopr853 — An Eighth-Order Method

Once you understand the above implementation of StepperDopr5, then you

have the framework for essentially any Runge-Kutta method. For production work,

we recommend that you use the following method, StepperDopr853. It is again a

Dormand-Prince embedded method, this time of eighth order that uses 12 function

evaluations. The original version used a sixth-order embedded method for error esti-

mation. However, it turned out that the error estimation was not robust in certain cir-

cumstances because the last evaluation point happened not to be used in computing

the error. Accordingly, Hairer, Nörsett, and Wanner [5] constructed both fifth-order

and third-order embedded methods that use the last point. Then the error is estimated

as

err D err5

err5
p

0:01.err3/2 C .err5/2
(17.2.18)

Most of the time, err5 � err3, so err D O.h8/. If the estimation breaks down so

that either err3 gets small or err5 gets large, then err will still give a reasonable

basis for stepsize control. This method has worked well in practice and is the basis

for the “853” in the name of the method.

For an eighth-order method we would like seventh-order dense output. It turns

out this requires three more function evaluations. Our coding of the dense out-

put follows closely the Fortran implementation of [5]. Since the code is somewhat

lengthy, but basically similar to StepperDopr5, we give it as StepperDopr853 in

a Webnote [9].
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17.3 Richardson Extrapolation and the

Bulirsch-Stoer Method

The techniques in this section are for differential equations containing smooth

functions. With just three caveats, we believe that the Bulirsch-Stoer method, dis-

cussed here, is the best-known way to obtain high accuracy solutions to ordinary

differential equations with minimal computational effort. The caveats are these:

� If you have a nonsmooth problem, for example, a differential equation whose

right-hand side involves a function that is evaluated by table look-up and in-

terpolation, go back to Runge-Kutta with an adaptive stepsize choice. That

method does an excellent job of feeling its way through rocky or discontinu-

ous terrain. It is also an excellent choice for a quick-and-dirty, low accuracy

solution of a set of equations.

� The techniques in this section are not particularly good for differential equa-

tions that have singular points inside the interval of integration. A regular solu-

tion must tiptoe very carefully across such points. Runge-Kutta with adaptive

stepsize can sometimes effect this; more generally, there are special techniques

available for such problems, beyond our scope here but touched on in ÷18.6.

� There may be a few problems that are both very smooth and have right-hand

sides that are very expensive to evaluate, for which predictor-corrector meth-

ods, discussed in ÷17.6, are the methods of choice.

The methods in this section involve three key ideas. The first is Richardson’s

deferred approach to the limit, which we already met in ÷4.3 on Romberg integration.

The idea is to consider the final answer of a numerical calculation as itself being an

analytic function (if a complicated one) of an adjustable parameter like the stepsize

h. That analytic function can be probed by performing the calculation with various

values of h, none of them being necessarily small enough to yield the accuracy that

we desire. When we know enough about the function, we fit it to some analytic form


