
N
u

m
e

ric
a

l
R

e
c
ip

e
s
:

T
h

e
A

rt
o

f
S

c
ie

n
tifi

c
C

o
m

p
u

tin
g

,
T

h
ird

E
d

itio
n

,
b
y

W
.H

.
P

re
s
s
,

S
.A

.
T
e

u
k
o

ls
k
y,

W
.T

.
V

e
tte

rlin
g

,
a

n
d

B
.P

.
F

la
n

n
e

ry.
V

e
rs

io
n

3
.0

4
(2

0
1

1
).

T
e
x
t

is
C

o
p
y
rig

h
t

c
1

9
8

8
-2

0
0

7
b
y

C
a

m
b

rid
g

e
U

n
ive

rs
ity

P
re

s
s
.

C
o

m
p

u
te

r
s
o

u
rc

e
c
o

d
e

is
C

o
p
y
rig

h
t

c
1

9
8

7
-2

0
0

7
b
y

N
u

m
e

ric
a

l
R

e
c
ip

e
s

S
o

ftw
a

re
.

H
a

rd
c
o
ve

r
b

o
o

k
IS

B
N

9
7

8
-0

-5
2

1
-8

8
0

6
8

-8
is

p
u

b
lis

h
e

d
b
y

C
a

m
b

rid
g

e
U

n
ive

rs
ity

P
re

s
s
,

h
ttp

://w
w

w
.c

a
m

b
rid

g
e
.o

rg
.

T
h

is
e

le
c
tro

n
ic

e
d

itio
n

is
p

u
b
lis

h
e

d
b
y

N
u

m
e

ric
a

l
R

e
c
ip

e
s

S
o

ftw
a

re
,

h
ttp

://n
u

m
e

ric
a

l.re
c
ip

e
s
.

P
e

rm
is

s
io

n
is

g
ra

n
te

d
fo

r
a

u
th

o
riz

e
d

s
u

b
s
c
rib

e
rs

to
m

a
k
e

o
n

e
p

a
p

e
r

c
o

p
y

fo
r

th
e

ir
o
w

n
p

e
rs

o
n

a
lu

s
e
.

F
u

rth
e

r
re

p
ro

d
u

c
tio

n
,
o

r
a

n
y

c
o

p
y
in

g
o

f
m

a
c
h

in
e

-re
a

d
a

b
le

fi
le

s
(in

c
lu

d
in

g
th

is
o

n
e

)
to

a
n
y

p
u

b
lic

s
e

rve
r

c
o

m
p

u
te

r,
is

s
tric

tly
p

ro
h

ib
ite

d
.

Integration of Ordinary
Differential Equations

CHAPTER 17

17.0 Introduction

Problems involving ordinary differential equations (ODEs) can always be re-

duced to the study of sets of first-order differential equations. For example the

second-order equation

d 2y

dx2
C q.x/

dy

dx
D r.x/ (17.0.1)

can be rewritten as two first-order equations,

dy

dx
D z.x/

dz

dx
D r.x/ � q.x/z.x/

(17.0.2)

where z is a new variable. This exemplifies the procedure for an arbitrary ODE. The

usual choice for the new variables is to let them be just derivatives of each other

(and of the original variable). Occasionally, it is useful to incorporate into their

definition some other factors in the equation, or some powers of the independent

variable, for the purpose of mitigating singular behavior that could result in overflows

or increased roundoff error. Let common sense be your guide: If you find that the

original variables are smooth in a solution, while your auxiliary variables are doing

crazy things, then figure out why and choose different auxiliary variables.

The generic problem in ordinary differential equations is thus reduced to the

study of a set of N coupled first-order differential equations for the functions yi ; i D

0; 1; : : : ; N � 1, having the general form

dyi .x/

dx
D fi .x; y0; : : : ; yN �1/; i D 0; : : : ; N � 1 (17.0.3)

where the functions fi on the right-hand side are known.

A problem involving ODEs is not completely specified by its equations. Even

more crucial in determining how to attack the problem numerically is the nature of

899

900 Chapter 17. Integration of Ordinary Differential Equations

the problem’s boundary conditions. Boundary conditions are algebraic conditions

on the values of the functions yi in (17.0.3). In general they can be satisfied at

discrete specified points, but do not hold between those points, i.e., are not preserved

automatically by the differential equations. Boundary conditions can be as simple as

requiring that certain variables have certain numerical values, or as complicated as a

set of nonlinear algebraic equations among the variables.

Usually, it is the nature of the boundary conditions that determines which nu-

merical methods will be feasible. Boundary conditions divide into two broad cate-

gories.

� In initial value problems all the yi are given at some starting value xs , and it is

desired to find the yi ’s at some final point xf , or at some discrete list of points

(for example, at tabulated intervals).

� In two-point boundary value problems, on the other hand, boundary conditions

are specified at more than one x. Typically, some of the conditions will be

specified at xs and the remainder at xf .

This chapter will consider exclusively the initial value problem, deferring two-point

boundary value problems, which are generally more difficult, to Chapter 18.

The underlying idea of any routine for solving the initial value problem is al-

ways this: Rewrite the dy’s and dx’s in (17.0.3) as finite steps �y and �x, and

multiply the equations by �x. This gives algebraic formulas for the change in the

functions when the independent variable x is “stepped” by one “stepsize” �x. In

the limit of making the stepsize very small, a good approximation to the underlying

differential equation is achieved. Literal implementation of this procedure results in

Euler’s method (equation 17.1.1, below), which is, however, not recommended for

any practical use. Euler’s method is conceptually important, however; one way or

another, practical methods all come down to this same idea: Add small increments

to your functions corresponding to derivatives (right-hand sides of the equations)

multiplied by stepsizes.

In this chapter we consider three major types of practical numerical methods

for solving initial value problems for ODEs:

� Runge-Kutta methods

� Richardson extrapolation and its particular implementation as the Bulirsch-

Stoer method

� predictor-corrector methods, also known as multistep methods.

A brief description of each of these types follows.

1. Runge-Kutta methods propagate a solution over an interval by combining

the information from several Euler-style steps (each involving one evaluation of the

right-hand f ’s), and then using the information obtained to match a Taylor series

expansion up to some higher order.

2. Richardson extrapolation uses the powerful idea of extrapolating a com-

puted result to the value that would have been obtained if the stepsize had been

very much smaller than it actually was. In particular, extrapolation to zero stepsize

is the desired goal. The first practical ODE integrator that implemented this idea

was developed by Bulirsch and Stoer, and so extrapolation methods are often called

Bulirsch-Stoer methods.

3. Predictor-corrector methods or multistep methods store the solution along

the way, and use those results to extrapolate the solution one step advanced; they

17.0 Introduction 901

then correct the extrapolation using derivative information at the new point. These

are best for very smooth functions.

Runge-Kutta used to be what you used when (i) you didn’t know any better, or

(ii) you had an intransigent problem where Bulirsch-Stoer was failing, or (iii) you had

a trivial problem where computational efficiency was of no concern. However, ad-

vances in Runge-Kutta methods, particularly the development of higher-order meth-

ods, have made Runge-Kutta competitive with the other methods in many cases.

Runge-Kutta succeeds virtually always; it is usually the fastest method when evalu-

ating fi is cheap and the accuracy requirement is not ultra-stringent (. 10�10), or in

general when moderate accuracy (. 10�5) is required. Predictor-corrector methods

have a relatively high overhead and so come into their own only when evaluating

fi is expensive. However, for many smooth problems, they are computationally

more efficient than Runge-Kutta. In recent years, Bulirsch-Stoer has been replacing

predictor-corrector in many applications, but it is too soon to say that predictor-

corrector is dominated in all cases. However, it appears that only rather sophisti-

cated predictor-corrector routines are competitive. Accordingly, we have chosen not

to give an implementation of predictor-corrector in this book. We discuss predictor-

corrector further in ÷17.6, so that you can use a packaged routine knowledgeably

should you encounter a suitable problem. In our experience, the relatively simple

Runge-Kutta and Bulirsch-Stoer routines we give are adequate for most problems.

Each of the three types of methods can be organized to monitor internal consis-

tency. This allows numerical errors, which are inevitably introduced into the solu-

tion, to be controlled by automatic (adaptive) changing of the fundamental stepsize.

We always recommend that adaptive stepsize control be implemented, and we will

do so below.

In general, all three types of methods can be applied to any initial value problem.

Each comes with its own set of debits and credits that must be understood before it

is used.

Section 17.5 of this chapter treats the subject of stiff equations, relevant both to

ordinary differential equations and also to partial differential equations (Chapter 20).

17.0.1 Organization of the Routines in This Chapter

We have organized the routines in this chapter into three nested levels, enabling

modularity and sharing common code wherever possible.

The highest level is the driver object, which starts and stops the integration,

stores intermediate results, and generally acts as an interface with the user. There is

nothing canonical about our driver object, Odeint. You should consider it to be an

example, and you can customize it for your particular application.

The next level down is a stepper object. The stepper oversees the actual incre-

menting of the independent variable x. It knows how to call the underlying algorithm

routine. It may reject the result, set a smaller stepsize, and call the algorithm routine

again, until compatibility with a predetermined accuracy criterion has been achieved.

The stepper’s fundamental task is to take the largest stepsize consistent with specified

performance. Only when this is accomplished does the true power of an algorithm

come to light.

All our steppers are derived from a base object called StepperBase:

StepperDopr5 and StepperDopr853 (two Runge-Kutta routines), StepperBS and

StepperStoerm (two Bulirsch-Stoer routines), and StepperRoss and StepperSIE

902 Chapter 17. Integration of Ordinary Differential Equations

(for so-called stiff equations).

Standing apart from the stepper, but interacting with it at the same level, is an

Output object. This is basically a container into which the stepper writes the output

of the integration, but it has some intelligence of its own: It can save, or not save,

intermediate results according to several different prescriptions that are specified by

its constructor. In particular, it has the option to provide so-called dense output, that

is, output at user-specified intermediate points without loss of efficiency.

The lowest or “nitty-gritty” level is the piece we call the algorithm routine. This

implements the basic formulas of the method, starts with dependent variables yi at

x, and calculates new values of the dependent variables at the value x C h. The

algorithm routine also yields some information about the quality of the solution after

the step. The routine is dumb, however, in that it is unable to make any adaptive

decision about whether the solution is of acceptable quality. Each algorithm routine

is implemented as a member function dy() in its corresponding stepper object.

17.0.2 The Odeint Object

It is a real time saver to have a single high-level interface to what are otherwise

quite diverse methods. We use the Odeint driver for a variety of problems, notably

including garden-variety ODEs or sets of ODEs, and definite integrals (augmenting

the methods of Chapter 4). The Odeint driver is templated on the stepper. This

means that you can usually change from one ODE method to another in just a few

keystrokes. For example, changing from the Dormand-Prince fifth-order Runge-

Kutta method to Bulirsch-Stoer is as simple as changing the template parameter from

StepperDopr5 to StepperBS.

The Odeint constructor simply initializes a bunch of things, including a call

to the stepper constructor. The meat is in the integrate routine, which repeatedly

invokes the step routine of the stepper to advance the solution from x1 to x2. It also

calls the functions of the Output object to save the results at appropriate points.

template<class Stepper>odeint.h
struct Odeint {
Driver for ODE solvers with adaptive stepsize control. The template parameter should be one
of the derived classes of StepperBase defining a particular integration algorithm.

static const Int MAXSTP=50000; Take at most MAXSTP steps.
Doub EPS;
Int nok;
Int nbad;
Int nvar;
Doub x1,x2,hmin;
bool dense; true if dense output requested by

out.VecDoub y,dydx;
VecDoub &ystart;
Output &out;
typename Stepper::Dtype &derivs; Get the type of derivs from the

stepper.Stepper s;
Int nstp;
Doub x,h;
Odeint(VecDoub_IO &ystartt,const Doub xx1,const Doub xx2,

const Doub atol,const Doub rtol,const Doub h1,
const Doub hminn,Output &outt,typename Stepper::Dtype &derivss);

Constructor sets everything up. The routine integrates starting values ystart[0..nvar-1]
from xx1 to xx2 with absolute tolerance atol and relative tolerance rtol. The quantity
h1 should be set as a guessed first stepsize, hmin as the minimum allowed stepsize (can be
zero). An Output object out should be input to control the saving of intermediate values.

17.0 Introduction 903

On output, nok and nbad are the number of good and bad (but retried and fixed) steps
taken, and ystart is replaced by values at the end of the integration interval. derivs is
the user-supplied routine (function or functor) for calculating the right-hand side derivative.

void integrate(); Does the actual integration.
};

template<class Stepper>
Odeint<Stepper>::Odeint(VecDoub_IO &ystartt, const Doub xx1, const Doub xx2,

const Doub atol, const Doub rtol, const Doub h1, const Doub hminn,
Output &outt,typename Stepper::Dtype &derivss) : nvar(ystartt.size()),
y(nvar),dydx(nvar),ystart(ystartt),x(xx1),nok(0),nbad(0),
x1(xx1),x2(xx2),hmin(hminn),dense(outt.dense),out(outt),derivs(derivss),
s(y,dydx,x,atol,rtol,dense) {
EPS=numeric_limits<Doub>::epsilon();
h=SIGN(h1,x2-x1);
for (Int i=0;i<nvar;i++) y[i]=ystart[i];
out.init(s.neqn,x1,x2);

}

template<class Stepper>
void Odeint<Stepper>::integrate() {

derivs(x,y,dydx);
if (dense) Store initial values.

out.out(-1,x,y,s,h);
else

out.save(x,y);
for (nstp=0;nstp<MAXSTP;nstp++) {

if ((x+h*1.0001-x2)*(x2-x1) > 0.0)
h=x2-x; If stepsize can overshoot, decrease.

s.step(h,derivs); Take a step.
if (s.hdid == h) ++nok; else ++nbad;
if (dense)

out.out(nstp,x,y,s,s.hdid);
else

out.save(x,y);
if ((x-x2)*(x2-x1) >= 0.0) { Are we done?

for (Int i=0;i<nvar;i++) ystart[i]=y[i]; Update ystart.
if (out.kmax > 0 && abs(out.xsave[out.count-1]-x2) > 100.0*abs(x2)*EPS)

out.save(x,y); Make sure last step gets saved.
return; Normal exit.

}
if (abs(s.hnext) <= hmin) throw("Step size too small in Odeint");
h=s.hnext;

}
throw("Too many steps in routine Odeint");

}

The Odeint object doesn’t know in advance which specific stepper object it

will be instantiated with. It does, however, rely on the fact that the stepper object

will be derived from, and thus have the methods in, this StepperBase object, which

serves as the base class for all subsequent ODE algorithms in this chapter:

struct StepperBase { stepper.h
Base class for all ODE algorithms.

Doub &x;
Doub xold; Used for dense output.
VecDoub &y,&dydx;
Doub atol,rtol;
bool dense;
Doub hdid; Actual stepsize accomplished by the step routine.
Doub hnext; Stepsize predicted by the controller for the next step.

904 Chapter 17. Integration of Ordinary Differential Equations

Doub EPS;
Int n,neqn; neqn D n except for StepperStoerm.
VecDoub yout,yerr; New value of y and error estimate.
StepperBase(VecDoub_IO &yy, VecDoub_IO &dydxx, Doub &xx, const Doub atoll,

const Doub rtoll, bool dens) : x(xx),y(yy),dydx(dydxx),atol(atoll),
rtol(rtoll),dense(dens),n(y.size()),neqn(n),yout(n),yerr(n) {}
Input to the constructor are the dependent variable vector y[0..n-1] and its derivative
dydx[0..n-1] at the starting value of the independent variable x. Also input are the
absolute and relative tolerances, atol and rtol, and the boolean dense, which is true
if dense output is required.

};

17.0.3 The Output Object

Output is controlled by the various constructors in the Output structure. The

default constructor, with no arguments, suppresses all output. The constructor with

argument nsave provides dense output provided nsave > 0. This means output

at values of x of your choosing, not necessarily the natural places that the stepper

method would land. The output points are nsave C 1 uniformly spaced points in-

cluding x1 and x2. If nsave � 0, output is saved at every integration step, that

is, only at the points where the stepper happens to land. While most of your needs

should be met by these options, you should find it easy to modify Output for your

particular application.

struct Output {odeint.h
Structure for output from ODE solver such as Odeint.

Int kmax; Current capacity of storage arrays.
Int nvar;
Int nsave; Number of intervals to save at for dense output.
bool dense; true if dense output requested.
Int count; Number of values actually saved.
Doub x1,x2,xout,dxout;
VecDoub xsave; Results stored in the vector xsave[0..count-1] and the

matrix ysave[0..nvar-1][0..count-1].MatDoub ysave;
Output() : kmax(-1),dense(false),count(0) {}
Default constructor gives no output.
Output(const Int nsavee) : kmax(500),nsave(nsavee),count(0),xsave(kmax) {
Constructor provides dense output at nsave equally spaced intervals. If nsave � 0, output
is saved only at the actual integration steps.

dense = nsave > 0 ? true : false;
}
void init(const Int neqn, const Doub xlo, const Doub xhi) {
Called by Odeint constructor, which passes neqn, the number of equations, xlo, the starting
point of the integration, and xhi, the ending point.

nvar=neqn;
if (kmax == -1) return;
ysave.resize(nvar,kmax);
if (dense) {

x1=xlo;
x2=xhi;
xout=x1;
dxout=(x2-x1)/nsave;

}
}
void resize() {
Resize storage arrays by a factor of two, keeping saved data.

Int kold=kmax;
kmax *= 2;
VecDoub tempvec(xsave);

17.0 Introduction 905

xsave.resize(kmax);
for (Int k=0; k<kold; k++)

xsave[k]=tempvec[k];
MatDoub tempmat(ysave);
ysave.resize(nvar,kmax);
for (Int i=0; i<nvar; i++)

for (Int k=0; k<kold; k++)
ysave[i][k]=tempmat[i][k];

}
template <class Stepper>
void save_dense(Stepper &s, const Doub xout, const Doub h) {
Invokes dense_out function of stepper routine to produce output at xout. Normally called
by out rather than directly. Assumes that xout is between xold and xold+h, where the
stepper must keep track of xold, the location of the previous step, and x=xold+h, the
current step.

if (count == kmax) resize();
for (Int i=0;i<nvar;i++)

ysave[i][count]=s.dense_out(i,xout,h);
xsave[count++]=xout;

}
void save(const Doub x, VecDoub_I &y) {
Saves values of current x and y.

if (kmax <= 0) return;
if (count == kmax) resize();
for (Int i=0;i<nvar;i++)

ysave[i][count]=y[i];
xsave[count++]=x;

}
template <class Stepper>
void out(const Int nstp,const Doub x,VecDoub_I &y,Stepper &s,const Doub h) {
Typically called by Odeint to produce dense output. Input variables are nstp, the current
step number, the current values of x and y, the stepper s, and the stepsize h. A call with
nstp=-1 saves the initial values. The routine checks whether x is greater than the desired
output point xout. If so, it calls save_dense.

if (!dense)
throw("dense output not set in Output!");

if (nstp == -1) {
save(x,y);
xout += dxout;

} else {
while ((x-xout)*(x2-x1) > 0.0) {

save_dense(s,xout,h);
xout += dxout;

}
}

}
};

17.0.4 A Quick-Start Example

Before we dive deep into the pros and cons of the different stepper types (the

meat of this chapter), let’s see how to code the solution of an actual problem. Suppose

we want to solve Van der Pol’s equation, which when written in first-order form is

y0
0 D y1

y0
1 D Œ.1 � y2

0/y1 � y0�=�
(17.0.4)

First encapsulate (17.0.4) in a functor (see ÷1.3.3). Using a functor instead of

a bare function gives you the opportunity to pass other information to the function,

906 Chapter 17. Integration of Ordinary Differential Equations

such as the values of fixed parameters. Every stepper class in this chapter is accord-

ingly templated on the type of the functor defining the right-hand side derivatives.

For our example, the right-hand side functor looks like:

struct rhs_van {

Doub eps;

rhs_van(Doub epss) : eps(epss) {}

void operator() (const Doub x, VecDoub_I &y, VecDoub_O &dydx) {

dydx[0]= y[1];

dydx[1]=((1.0-y[0]*y[0])*y[1]-y[0])/eps;

}

};

The key thing is the line beginning void operator(): It always should have this

form, with the definition of dydx following. Here we have chosen to specify � as

a parameter in the constructor so that the main program can easily pass a specific

value to the right-hand side. Alternatively, you could have omitted the constructor,

relying on the compiler-supplied default constructor, and hard-coded a value of � in

the routine. Note, of course, that there is nothing special about the name rhs_van.

We will integrate from 0 to 2 with initial conditions y0 D 2, y1 D 0 and with

� D 10�3. Then your main program will have declarations like the following:

const Int nvar=2;

const Doub atol=1.0e-3, rtol=atol, h1=0.01, hmin=0.0, x1=0.0, x2=2.0;

VecDoub ystart(nvar);

ystart[0]=2.0;

ystart[1]=0.0;

Output out(20); Dense output at 20 points plus x1.
rhs_van d(1.0e-3); Declare d as a rhs_van object.
Odeint<StepperDopr5<rhs_van> > ode(ystart,x1,x2,atol,rtol,h1,hmin,out,d);

ode.integrate();

Note how the Odeint object is templated on the stepper, which in turn is templated

on the derivative object, rhs_van in this case. The space between the two closing an-

gle brackets is necessary; otherwise the compiler parses >> as the right-shift operator!

The number of good steps taken is available in ode.nok and the number of

bad steps in ode.nbad. The output, which is equally spaced, can be printed by

statements like

for (Int i=0;i<out.count;i++)

cout << out.xsave[i] << " " << out.ysave[0][i] << " " <<

out.ysave[1][i] << endl;

You can alternatively save output at the actual integration steps by the declara-

tion

Output out(-1);

or suppress all saving of output with

Output out;

In this case, the solution values at the endpoint are available in ystart[0] and

ystart[1], overwriting the starting values.

CITED REFERENCES AND FURTHER READING:

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood

Cliffs, NJ: Prentice-Hall).

N
u

m
e

ric
a

l
R

e
c
ip

e
s
:

T
h

e
A

rt
o

f
S

c
ie

n
tifi

c
C

o
m

p
u

tin
g

,
T

h
ird

E
d

itio
n

,
b
y

W
.H

.
P

re
s
s
,

S
.A

.
T
e

u
k
o

ls
k
y,

W
.T

.
V

e
tte

rlin
g

,
a

n
d

B
.P

.
F

la
n

n
e

ry.
V

e
rs

io
n

3
.0

4
(2

0
1

1
).

T
e
x
t

is
C

o
p
y
rig

h
t

c
1

9
8

8
-2

0
0

7
b
y

C
a

m
b

rid
g

e
U

n
ive

rs
ity

P
re

s
s
.

C
o

m
p

u
te

r
s
o

u
rc

e
c
o

d
e

is
C

o
p
y
rig

h
t

c
1

9
8

7
-2

0
0

7
b
y

N
u

m
e

ric
a

l
R

e
c
ip

e
s

S
o

ftw
a

re
.

H
a

rd
c
o
ve

r
b

o
o

k
IS

B
N

9
7

8
-0

-5
2

1
-8

8
0

6
8

-8
is

p
u

b
lis

h
e

d
b
y

C
a

m
b

rid
g

e
U

n
ive

rs
ity

P
re

s
s
,

h
ttp

://w
w

w
.c

a
m

b
rid

g
e
.o

rg
.

T
h

is
e

le
c
tro

n
ic

e
d

itio
n

is
p

u
b
lis

h
e

d
b
y

N
u

m
e

ric
a

l
R

e
c
ip

e
s

S
o

ftw
a

re
,

h
ttp

://n
u

m
e

ric
a

l.re
c
ip

e
s
.

P
e

rm
is

s
io

n
is

g
ra

n
te

d
fo

r
a

u
th

o
riz

e
d

s
u

b
s
c
rib

e
rs

to
m

a
k
e

o
n

e
p

a
p

e
r

c
o

p
y

fo
r

th
e

ir
o
w

n
p

e
rs

o
n

a
lu

s
e
.

F
u

rth
e

r
re

p
ro

d
u

c
tio

n
,
o

r
a

n
y

c
o

p
y
in

g
o

f
m

a
c
h

in
e

-re
a

d
a

b
le

fi
le

s
(in

c
lu

d
in

g
th

is
o

n
e

)
to

a
n
y

p
u

b
lic

s
e

rve
r

c
o

m
p

u
te

r,
is

s
tric

tly
p

ro
h

ib
ite

d
.

17.1 Runge-Kutta Method 907

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington, DC:

Mathematical Association of America), Chapter 5.

Stoer, J., and Bulirsch, R. 2002, Introduction to Numerical Analysis, 3rd ed. (New York: Springer),

Chapter 7.

Hairer, E., Nørsett, S.P., and Wanner, G. 1993, Solving Ordinary Differential Equations I. Nonstiff

Problems, 2nd ed. (New York: Springer)

Hairer, E., Nørsett, S.P., and Wanner, G. 1996, Solving Ordinary Differential Equations II. Stiff

and Differential-Algebraic Problems, 2nd ed. (New York: Springer)

Lambert, J. 1973, Computational Methods in Ordinary Differential Equations (New York: Wiley).

Lapidus, L., and Seinfeld, J. 1971, Numerical Solution of Ordinary Differential Equations (New

York: Academic Press).

17.1 Runge-Kutta Method

The formula for the Euler method is

ynC1 D yn C hf .xn; yn/ (17.1.1)

which advances a solution from xn to xnC1 � xnCh. The formula is unsymmetrical:

It advances the solution through an interval h, but uses derivative information only at

the beginning of that interval (see Figure 17.1.1). That means (and you can verify by

expansion in power series) that the step’s error is only one power of h smaller than

the correction, i.e., O.h2/ added to (17.1.1).

There are several reasons that Euler’s method is not recommended for practical

use, among them, (i) the method is not very accurate when compared to other, fancier,

methods run at the equivalent stepsize, and (ii) neither is it very stable (see ÷17.5

below).

Consider, however, the use of a step like (17.1.1) to take a “trial” step to the

midpoint of the interval. Then use the values of both x and y at that midpoint to

compute the “real” step across the whole interval. Figure 17.1.2 illustrates the idea.

In equations,

k1 D hf .xn; yn/

k2 D hf
�

xn C
1
2
h; yn C

1
2
k1

�

ynC1 D yn C k2 C O.h3/

(17.1.2)

As indicated in the error term, this symmetrization cancels out the first-order error

term, making the method second order. [A method is conventionally called nth order

if its error term is O.hnC1/.] In fact, (17.1.2) is called the second-order Runge-Kutta

or midpoint method.

We needn’t stop there. There are many ways to evaluate the right-hand side

f .x; y/ that all agree to first order, but that have different coefficients of higher-order

error terms. Adding up the right combination of these, we can eliminate the error

terms order by order. That is the basic idea of the Runge-Kutta method. Abramowitz

and Stegun [1] and Gear [2] give various specific formulas that derive from this basic

idea. By far the most often used is the classical fourth-order Runge-Kutta formula,

