Turning a boundary-Value Problem into a
Matrix Problem

Let’s imagine we are presented with a boundary-value problem involving a second-order linear differ-
ential equation (of the sort you came to know and love in MATH 210):

Y+ f@)y +g(x)y=0, a<z<b, (1)

with y(a) = y, and y(b) = yp. We can recast this as a matrix equation as follows. First we discretize
the problem by defining an array of size N + 1 in x, with zg = a,zy = b, with uniform spacing
h = (b—a)/N. In numpy parlance, we would say

X = numpy.linspace(a, b, N)

Denoting y(zy) by yn, we can write centered (2nd-order accurate) expressions for the derivatives:

"o Ynt+1 — 2Yn + Yn—1
A T)
2h ’

so, substituted and multiplying across by h?, we have

Y

Ynt1 — 2Un + Yn—1 + 5hfn Yns1 — Yn—1) + h2gnyn =0,
where f,, = f(xn), gn = g(x,). Collecting terms, we find
(1 + %hfn) Yn+1 + (—2 + h2gn) Yn + (1 - %hfn> Yn—1 =10

forn=1,...,N —1. We can’t apply this for n = 0 or n = N because y_; and yy1 are undefined,
but at the ends of the range we can use the boundary conditions, yo = Y4, YN = ¥s-
With a,, =1+ %hfn,ﬁn =24+ h%g,,m=1- %hfn, forn=1,...,N — 1 we have

Biyr + a1y = —YYa
Yyr + Poy2 + agys = 0
Y3y2 + B3yz + a3y = 0
IN-1YN—2 + BN-1YN-1 = —an—1W

This is a matrix equation

Ay=r
where y is the N — 1 dimensional column vector (y1,¥2,...,yn-1)", * = (—Y1%a,0,...,0, —an_19)7,
and the matrix A is
B a1 0 0 O 0 O 0
Y2 P2 az 0 0 0 0 0
0 v B3 az O 0 0 0

0 0 0 0 0 --- 0 ynv_1 Bn-1

This equation is easily solved using the scipy.linalg function solve:
y = solve(A, r)

Note that there is nothing special about homogeneous equations. The procedure for an inhomoge-
neous system, with a function s(z) on the right-hand side of Equation (1), is almost identical and can
be solved the same way, except that now r = (h?s(x1) — Y1Ya, h2s(x2),. .., h%s(zN_2), h?s(zN_1) —

T
aN-1Yp)" -

