
Turning a boundary-Value Problem into a
Matrix Problem

Let’s imagine we are presented with a boundary-value problem involving a second-order linear differ-
ential equation (of the sort you came to know and love in MATH 210):

y′′ + f(x)y′ + g(x)y = 0, a ≤ x ≤ b, (1)

with y(a) = ya and y(b) = yb. We can recast this as a matrix equation as follows. First we discretize
the problem by defining an array of size N + 1 in x, with x0 = a, xN = b, with uniform spacing
h = (b− a)/N . In numpy parlance, we would say

x = numpy.linspace(a, b, N)

Denoting y(xn) by yn, we can write centered (2nd-order accurate) expressions for the derivatives:

y′′ ≈ yn+1 − 2yn + yn−1
h2

y′ ≈ yn+1 − yn−1
2h

,

so, substituted and multiplying across by h2, we have

yn+1 − 2yn + yn−1 + 1
2hfn (yn+1 − yn−1) + h2gnyn = 0,

where fn = f(xn), gn = g(xn). Collecting terms, we find(
1 + 1

2hfn
)
yn+1 +

(
−2 + h2gn

)
yn +

(
1 − 1

2hfn
)
yn−1 = 0

for n = 1, . . . , N − 1. We can’t apply this for n = 0 or n = N because y−1 and yN+1 are undefined,
but at the ends of the range we can use the boundary conditions, y0 = ya, yN = yb.

With αn = 1 + 1
2hfn, βn = −2 + h2gn, γn = 1 − 1

2hfn, for n = 1, . . . , N − 1 we have

β1 y1 + α1 y2 = −γ1 ya
γ2 y1 + β2 y2 + α2 y3 = 0

γ3 y2 + β3 y3 + α3 y4 = 0
. .
. .
. .

γN−1 yN−2 + βN−1 yN−1 = −αN−1 yb

This is a matrix equation
Ay = r

where y is the N − 1 dimensional column vector (y1, y2, . . . , yN−1)
T , r = (−γ1ya, 0, . . . , 0,−αN−1yb)

T ,
and the matrix A is

A =



β1 α1 0 0 0 · · · 0 0 0
γ2 β2 α2 0 0 · · · 0 0 0
0 γ3 β3 α3 0 · · · 0 0 0
.
.
.
0 0 0 0 0 · · · 0 γN−1 βN−1





This equation is easily solved using the scipy.linalg function solve:

y = solve(A, r)

Note that there is nothing special about homogeneous equations. The procedure for an inhomoge-
neous system, with a function s(x) on the right-hand side of Equation (1), is almost identical and can
be solved the same way, except that now r = (h2s(x1) − γ1ya, h

2s(x2), . . . , h
2s(xN−2), h

2s(xN−1) −
αN−1yb)

T .


