
The Euler Method

The simplest possible integration scheme for the initial-value problem is as the Euler method. Given
the differential equation

dy

dx
= f(x, y),

with initial condition y = y0 when x = 0, discretize x with

xi = iδx, i = 1, 2, . . .

where δx is some suitably short step length. Then, given the numerical value yi at xi, we can
integrate the system forward according to the prescription

yi+1 = yi + δx f(xi, yi)

xi+1 = xi + δx.

Geometrically, as illustrated below, we are simply “following the tangent” during the step, then
redetermining the new slope of the curve and taking the next step along the new tangent. This
scheme generalizes trivially to the case where y is a vector. The programs euler1.py and euler2.py

are simple implementations of the one- and two-dimensional cases.
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The Euler method has the undeniable advantage of simplicity. Unfortunately, it is not very
accurate—the error at the end of a timestep is O(δx2), and these errors add coherently over the
course of the integration. Much worse is the fact that the Euler method can become unstable
under certain circumstances—an undesirable property of any integrator. This instability can be
controlled by careful stepsize control. However, Euler’s low order and the fact that the next simplest
method—the Midpoint method—is stable, more accurate, and only marginally more complicated
to program, mean that the Euler method is rarely used in real calculations.


