One way of describing the metric of a flat, homogenous, expanding universe is: \begin{align} \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & a(t)^2 & 0 & 0 \\ 0 & 0 & a(t)^2 & 0 \\ 0 & 0 & 0 & a(t)^2 \\ \end{pmatrix} \end{align} where $a(t)$ is a function of time only, and the coordinates are \begin{align*} x^{\mu} = \begin{pmatrix}t\\x\\y\\z\end{pmatrix} \end{align*}

  • Compute all non vanishing terms of the Riemann Tensor.
  • Compute all Non-vanishing terms of the Ricci Tensor.
  • Compute the Einstein Tensor
In [1]:
{t,x,y,z}::Coordinate;
{\alpha,\beta, \mu,\nu,\rho,\sigma,\lambda,\kappa,\chi,\gamma}::Indices(values={t,x,y,z},position=fixed); 

\partial{#}::PartialDerivative.
g_{\mu \nu}::Metric.
g^{\mu \nu}::InverseMetric.
R_{\mu \nu \rho \sigma}::RiemannTensor.
H_{\mu \nu}::Symmetric.
Out[1]:

${}\text{Attached property Coordinate to~}\left[t,~ x,~ y,~ z\right].$

Out[1]:

${}\text{Attached property Indices(position=fixed) to~}\left[\alpha,~ \beta,~ \mu,~ \nu,~ \rho,~ \sigma,~ \lambda,~ \kappa,~ \chi,~ \gamma\right].$

In [2]:
# Declaring a as a function of t
a::Depends(t);
Out[2]:

${}\text{Attached property Depends to~}a.$

In [3]:
metric:= {
    g_{t t} = -1,
    g_{x x} = a**2,
    g_{y y} = a**2,
    g_{z z} = a**2
};
Out[3]:

${}\left[g_{t t} = -1,~ g_{x x} = {a}^{2},~ g_{y y} = {a}^{2},~ g_{z z} = {a}^{2}\right]$

In [4]:
complete(metric,$g^{\mu\nu}$);
Out[4]:

${}\left[g_{t t} = -1,~ g_{x x} = {a}^{2},~ g_{y y} = {a}^{2},~ g_{z z} = {a}^{2},~ g^{t t} = -1,~ g^{x x} = {a}^{-2},~ g^{y y} = {a}^{-2},~ g^{z z} = {a}^{-2}\right]$

In [5]:
ex:= k_{\mu \nu \alpha \rho} = \partial_{\mu \rho}{g_{\nu \alpha}};
evaluate(ex,metric,rhsonly=True);
Out[5]:

${}k_{\mu \nu \alpha \rho} = \partial_{\mu \rho}{g_{\nu \alpha}}$

Out[5]:

${}k_{\mu \nu \alpha \rho} = \square{}_{\alpha}{}_{\nu}{}_{\mu}{}_{\rho}\left\{\begin{aligned}\square{}_{z}{}_{z}{}_{t}{}_{t}= & 2a \partial_{t t}{a}+2{\left(\partial_{t}{a}\right)}^{2}\\[-.5ex] \square{}_{y}{}_{y}{}_{t}{}_{t}= & 2a \partial_{t t}{a}+2{\left(\partial_{t}{a}\right)}^{2}\\[-.5ex] \square{}_{x}{}_{x}{}_{t}{}_{t}= & 2a \partial_{t t}{a}+2{\left(\partial_{t}{a}\right)}^{2}\\[-.5ex] \end{aligned}\right. $

In [6]:
# Define Christoffel symbols
cffl_symb := \Gamma^{\mu}_{\nu\rho} = 1/2 g^{\mu\sigma} ( 
                \partial_{\rho}{g_{\nu\sigma}} +
                \partial_{\nu}{g_{\rho\sigma}} -
                \partial_{\sigma}{g_{\nu\rho}});

# Evaluate the christoeffl symbols for this metric
evaluate(cffl_symb,metric, rhsonly=True);
Out[6]:

${}\Gamma^{\mu}\,_{\nu \rho} = \frac{1}{2}g^{\mu \sigma} \left(\partial_{\rho}{g_{\nu \sigma}}+\partial_{\nu}{g_{\rho \sigma}}-\partial_{\sigma}{g_{\nu \rho}}\right)$

Out[6]:

${}\Gamma^{\mu}\,_{\nu \rho} = \square{}_{\nu}{}_{\rho}{}^{\mu}\left\{\begin{aligned}\square{}_{z}{}_{t}{}^{z}= & \partial_{t}{a} {a}^{-1}\\[-.5ex] \square{}_{y}{}_{t}{}^{y}= & \partial_{t}{a} {a}^{-1}\\[-.5ex] \square{}_{x}{}_{t}{}^{x}= & \partial_{t}{a} {a}^{-1}\\[-.5ex] \square{}_{t}{}_{z}{}^{z}= & \partial_{t}{a} {a}^{-1}\\[-.5ex] \square{}_{t}{}_{y}{}^{y}= & \partial_{t}{a} {a}^{-1}\\[-.5ex] \square{}_{t}{}_{x}{}^{x}= & \partial_{t}{a} {a}^{-1}\\[-.5ex] \square{}_{z}{}_{z}{}^{t}= & a \partial_{t}{a}\\[-.5ex] \square{}_{y}{}_{y}{}^{t}= & a \partial_{t}{a}\\[-.5ex] \square{}_{x}{}_{x}{}^{t}= & a \partial_{t}{a}\\[-.5ex] \end{aligned}\right. $

In [7]:
# Define the Riemann tensor
rieman_tensor := R^{\alpha}_{\beta \mu \nu} =
             \Gamma^{\alpha}_{\sigma \mu}*\Gamma^{\sigma}_{\beta \nu}
            -\Gamma^{\alpha}_{\sigma \nu}*\Gamma^{\sigma}_{\beta \mu}
            -\partial_{\nu}{\Gamma^{\alpha}_{\beta \mu}}
            +\partial_{\mu}{\Gamma^{\alpha}_{\beta \nu}};
            
_ = substitute(rieman_tensor,cffl_symb)
rieman_tensor_up = evaluate(_,metric,rhsonly=True);
Out[7]:

${}R^{\alpha}\,_{\beta \mu \nu} = \Gamma^{\alpha}\,_{\sigma \mu} \Gamma^{\sigma}\,_{\beta \nu}-\Gamma^{\alpha}\,_{\sigma \nu} \Gamma^{\sigma}\,_{\beta \mu}-\partial_{\nu}{\Gamma^{\alpha}\,_{\beta \mu}}+\partial_{\mu}{\Gamma^{\alpha}\,_{\beta \nu}}$

Out[7]:

${}R^{\alpha}\,_{\beta \mu \nu} = \square{}_{\mu}{}^{\alpha}{}_{\beta}{}_{\nu}\left\{\begin{aligned}\square{}_{t}{}^{z}{}_{t}{}_{z}= & \partial_{t t}{a} {a}^{-1}\\[-.5ex] \square{}_{t}{}^{y}{}_{t}{}_{y}= & \partial_{t t}{a} {a}^{-1}\\[-.5ex] \square{}_{t}{}^{x}{}_{t}{}_{x}= & \partial_{t t}{a} {a}^{-1}\\[-.5ex] \square{}_{z}{}^{z}{}_{y}{}_{y}= & {\left(\partial_{t}{a}\right)}^{2}\\[-.5ex] \square{}_{z}{}^{z}{}_{x}{}_{x}= & {\left(\partial_{t}{a}\right)}^{2}\\[-.5ex] \square{}_{y}{}^{y}{}_{z}{}_{z}= & {\left(\partial_{t}{a}\right)}^{2}\\[-.5ex] \square{}_{y}{}^{y}{}_{x}{}_{x}= & {\left(\partial_{t}{a}\right)}^{2}\\[-.5ex] \square{}_{x}{}^{x}{}_{z}{}_{z}= & {\left(\partial_{t}{a}\right)}^{2}\\[-.5ex] \square{}_{x}{}^{x}{}_{y}{}_{y}= & {\left(\partial_{t}{a}\right)}^{2}\\[-.5ex] \square{}_{z}{}^{t}{}_{z}{}_{t}= & -a \partial_{t t}{a}\\[-.5ex] \square{}_{y}{}^{t}{}_{y}{}_{t}= & -a \partial_{t t}{a}\\[-.5ex] \square{}_{x}{}^{t}{}_{x}{}_{t}= & -a \partial_{t t}{a}\\[-.5ex] \square{}_{z}{}^{z}{}_{t}{}_{t}= & -\partial_{t t}{a} {a}^{-1}\\[-.5ex] \square{}_{y}{}^{y}{}_{t}{}_{t}= & -\partial_{t t}{a} {a}^{-1}\\[-.5ex] \square{}_{x}{}^{x}{}_{t}{}_{t}= & -\partial_{t t}{a} {a}^{-1}\\[-.5ex] \square{}_{y}{}^{z}{}_{y}{}_{z}= & -{\left(\partial_{t}{a}\right)}^{2}\\[-.5ex] \square{}_{x}{}^{z}{}_{x}{}_{z}= & -{\left(\partial_{t}{a}\right)}^{2}\\[-.5ex] \square{}_{z}{}^{y}{}_{z}{}_{y}= & -{\left(\partial_{t}{a}\right)}^{2}\\[-.5ex] \square{}_{x}{}^{y}{}_{x}{}_{y}= & -{\left(\partial_{t}{a}\right)}^{2}\\[-.5ex] \square{}_{z}{}^{x}{}_{z}{}_{x}= & -{\left(\partial_{t}{a}\right)}^{2}\\[-.5ex] \square{}_{y}{}^{x}{}_{y}{}_{x}= & -{\left(\partial_{t}{a}\right)}^{2}\\[-.5ex] \square{}_{t}{}^{t}{}_{z}{}_{z}= & a \partial_{t t}{a}\\[-.5ex] \square{}_{t}{}^{t}{}_{y}{}_{y}= & a \partial_{t t}{a}\\[-.5ex] \square{}_{t}{}^{t}{}_{x}{}_{x}= & a \partial_{t t}{a}\\[-.5ex] \end{aligned}\right. $

In [8]:
rieman_low_def := R_{\alpha \beta \mu \nu} = g_{\alpha \sigma}*R^{\sigma}_{\beta \mu \nu};
_ = substitute(rieman_low_def,rieman_tensor_up)
rieman_tensor_low = evaluate(_,metric,rhsonly=True);
Out[8]:

${}R_{\alpha \beta \mu \nu} = g_{\alpha \sigma} R^{\sigma}\,_{\beta \mu \nu}$

Out[8]:

${}R_{\alpha \beta \mu \nu} = \square{}_{\alpha}{}_{\mu}{}_{\beta}{}_{\nu}\left\{\begin{aligned}\square{}_{t}{}_{z}{}_{z}{}_{t}= & a \partial_{t t}{a}\\[-.5ex] \square{}_{t}{}_{y}{}_{y}{}_{t}= & a \partial_{t t}{a}\\[-.5ex] \square{}_{t}{}_{x}{}_{x}{}_{t}= & a \partial_{t t}{a}\\[-.5ex] \square{}_{t}{}_{t}{}_{z}{}_{z}= & -a \partial_{t t}{a}\\[-.5ex] \square{}_{t}{}_{t}{}_{y}{}_{y}= & -a \partial_{t t}{a}\\[-.5ex] \square{}_{t}{}_{t}{}_{x}{}_{x}= & -a \partial_{t t}{a}\\[-.5ex] \square{}_{x}{}_{t}{}_{t}{}_{x}= & a \partial_{t t}{a}\\[-.5ex] \square{}_{x}{}_{x}{}_{z}{}_{z}= & {a}^{2} {\left(\partial_{t}{a}\right)}^{2}\\[-.5ex] \square{}_{x}{}_{x}{}_{y}{}_{y}= & {a}^{2} {\left(\partial_{t}{a}\right)}^{2}\\[-.5ex] \square{}_{x}{}_{x}{}_{t}{}_{t}= & -a \partial_{t t}{a}\\[-.5ex] \square{}_{x}{}_{z}{}_{z}{}_{x}= & -{a}^{2} {\left(\partial_{t}{a}\right)}^{2}\\[-.5ex] \square{}_{x}{}_{y}{}_{y}{}_{x}= & -{a}^{2} {\left(\partial_{t}{a}\right)}^{2}\\[-.5ex] \square{}_{y}{}_{t}{}_{t}{}_{y}= & a \partial_{t t}{a}\\[-.5ex] \square{}_{y}{}_{y}{}_{z}{}_{z}= & {a}^{2} {\left(\partial_{t}{a}\right)}^{2}\\[-.5ex] \square{}_{y}{}_{y}{}_{x}{}_{x}= & {a}^{2} {\left(\partial_{t}{a}\right)}^{2}\\[-.5ex] \square{}_{y}{}_{y}{}_{t}{}_{t}= & -a \partial_{t t}{a}\\[-.5ex] \square{}_{y}{}_{z}{}_{z}{}_{y}= & -{a}^{2} {\left(\partial_{t}{a}\right)}^{2}\\[-.5ex] \square{}_{y}{}_{x}{}_{x}{}_{y}= & -{a}^{2} {\left(\partial_{t}{a}\right)}^{2}\\[-.5ex] \square{}_{z}{}_{t}{}_{t}{}_{z}= & a \partial_{t t}{a}\\[-.5ex] \square{}_{z}{}_{z}{}_{y}{}_{y}= & {a}^{2} {\left(\partial_{t}{a}\right)}^{2}\\[-.5ex] \square{}_{z}{}_{z}{}_{x}{}_{x}= & {a}^{2} {\left(\partial_{t}{a}\right)}^{2}\\[-.5ex] \square{}_{z}{}_{z}{}_{t}{}_{t}= & -a \partial_{t t}{a}\\[-.5ex] \square{}_{z}{}_{y}{}_{y}{}_{z}= & -{a}^{2} {\left(\partial_{t}{a}\right)}^{2}\\[-.5ex] \square{}_{z}{}_{x}{}_{x}{}_{z}= & -{a}^{2} {\left(\partial_{t}{a}\right)}^{2}\\[-.5ex] \end{aligned}\right. $

In [9]:
ricci_def := R_{\mu \lambda} = g^{\alpha \rho}*R_{\rho \mu \alpha \lambda};
_ = substitute(ricci_def,rieman_tensor_low)
ricci = evaluate(_,metric,rhsonly=True);
Out[9]:

${}R_{\mu \lambda} = g^{\alpha \rho} R_{\rho \mu \alpha \lambda}$

Out[9]:

${}R_{\mu \lambda} = \square{}_{\mu}{}_{\lambda}\left\{\begin{aligned}\square{}_{z}{}_{z}= & a \partial_{t t}{a}+2{\left(\partial_{t}{a}\right)}^{2}\\[-.5ex] \square{}_{y}{}_{y}= & a \partial_{t t}{a}+2{\left(\partial_{t}{a}\right)}^{2}\\[-.5ex] \square{}_{x}{}_{x}= & a \partial_{t t}{a}+2{\left(\partial_{t}{a}\right)}^{2}\\[-.5ex] \square{}_{t}{}_{t}= & -3\partial_{t t}{a} {a}^{-1}\\[-.5ex] \end{aligned}\right. $

In [10]:
ricci_scalar_def := R = g^{\mu \nu}*R_{\mu \nu};
_ =substitute(ricci_scalar_def,ricci)
ricci_scalar = evaluate(_,metric,rhsonly=True);
Out[10]:

${}R = g^{\mu \nu} R_{\mu \nu}$

Out[10]:

${}R = 6\left(a \partial_{t t}{a}+{\left(\partial_{t}{a}\right)}^{2}\right) {a}^{-2}$

In [11]:
eins_tensor_def := G_{\mu \nu} = R_{\mu \nu} - 1/2* g_{\mu \nu}*R;
_ = substitute(eins_tensor_def,ricci_def)
_ = substitute(_,ricci_scalar)
eins_tensor_def = evaluate(_,metric,rhsonly=True);
Out[11]:

${}G_{\mu \nu} = R_{\mu \nu} - \frac{1}{2}g_{\mu \nu} R$

Out[11]:

${}G_{\mu \nu} = \square{}_{\mu}{}_{\nu}\left\{\begin{aligned}\square{}_{z}{}_{z}= & -2a \partial_{t t}{a}-{\left(\partial_{t}{a}\right)}^{2}\\[-.5ex] \square{}_{y}{}_{y}= & -2a \partial_{t t}{a}-{\left(\partial_{t}{a}\right)}^{2}\\[-.5ex] \square{}_{x}{}_{x}= & -2a \partial_{t t}{a}-{\left(\partial_{t}{a}\right)}^{2}\\[-.5ex] \square{}_{t}{}_{t}= & 3{\left(\partial_{t}{a}\right)}^{2} {a}^{-2}\\[-.5ex] \end{aligned}\right. $

In [12]:
eins_raised := G^{\mu \nu} = g^{\mu \alpha}*g^{\nu \beta}*G_{\alpha \beta};
_ = substitute(eins_raised,eins_tensor_def)
eins_raised = evaluate(_,metric,rhsonly=True);
Out[12]:

${}G^{\mu \nu} = g^{\mu \alpha} g^{\nu \beta} G_{\alpha \beta}$

Out[12]:

${}G^{\mu \nu} = \square{}^{\mu}{}^{\nu}\left\{\begin{aligned}\square{}^{z}{}^{z}= & -\left(2a \partial_{t t}{a}+{\left(\partial_{t}{a}\right)}^{2}\right) {a}^{-4}\\[-.5ex] \square{}^{y}{}^{y}= & -\left(2a \partial_{t t}{a}+{\left(\partial_{t}{a}\right)}^{2}\right) {a}^{-4}\\[-.5ex] \square{}^{x}{}^{x}= & -\left(2a \partial_{t t}{a}+{\left(\partial_{t}{a}\right)}^{2}\right) {a}^{-4}\\[-.5ex] \square{}^{t}{}^{t}= & 3{\left(\partial_{t}{a}\right)}^{2} {a}^{-2}\\[-.5ex] \end{aligned}\right. $

This is the required Einstein tensor.