QUANTUM MECHANICS I

PHYS 516

Problem Set # 1 Distributed: Jan. 8, 2010 Due: Jan. 20, 2010

The Frobenius Method is a classical workhorse for finding solutions of relatively simple ordinary differential equations. (The link is to the course website: http://www.physics.drexel.edu/~bob/PHYS516_10/Frobenius.pdf). Here are two examples:

$$\left(\frac{d^2}{dr^2} + \frac{A}{r^2} + \frac{B}{r} + C\right) R(r) = 0$$
$$\left(\frac{d^2}{dr^2} + \frac{D}{r^2} + E + Fr^2\right) R(r) = 0$$

The first is a general form for the radial part of the quantum wavefunction for a Coulomb potential. The second is a general form for the radial part of the quantum wavefunction for a harmonic oscillator potential.

1. Use the Frobenius method to determine the quantization condition for square-integrable radial functions $\int_0^\infty R^2(r)dr < \infty$:

Coulomb: on the coefficients A, B, C;

Harmonic Oscillator: on the coefficients D, E, F.

2. For the Coulomb problem in three dimensions determine the coefficients A, B, C in the

a. relativistic case (Klein-Gordan Equation)

b. nonrelativistic case (NR Schrödinger Equation).

3. Determine the coefficients D, E, F for the nonrelativistic harmonic oscillator in

 $\mathbf{i.}$ one dimension

ii. two dimensions

iii. three dimensions

4. Compute the energy of an electron (in eV) in the most tightly bound state about each of these nuclei:

	Z = 1	Z = 26	Z = 82
	Proton	Iron Nucleus	Lead Nucleus
N.R. Schrödinger Equation	-13.58		
Relativistic Klein-Gordon Eq.			

In computing the relativistic energy, subtract off the electron rest energy mc^2 and enter $E - mc^2$ in the table above.

In this problem, if there are any surprises, explain:

a. What?

- **b.** Where?
- c. Why?
- **d.** What does it mean?
- e. What to do about it?