1. Robertson-Walker metric
Show that the Robertson-Walker metric
\[
c^2 d\tau^2 = c^2 dt^2 - R^2(t) [dr^2 + S_k^2(r)d\psi^2]
\]
can also be written in the form
\[
c^2 d\tau^2 = c^2 dt^2 - R^2(t) [dr^2/(1 - kr^2) + r^2 d\psi^2]
\]
A quick solution is to work backwards for the second form. For \(r\) in the second equation, substitute
\[r = \sin r', r', \text{ or sinh } r'\]
for the cases \(k = +1, 0, -1\), respectively. The derivatives of this are
\[dr = \cos r'dr', dr', \cosh r'dr'\]
and the first term within brackets becomes
\[
\frac{dr^2}{1 - kr^2} = dr'^2
\]
for all three cases. Substitution into the second form yields the first upon the trivial replacement of \(r'\) with \(r\) and identification of \(S_k(r)\) with the three cases.

2. Metric for an Open Universe
For a \(k = -1\) Friedmann cosmology (\(\Lambda = 0\)), with \(\rho = p = 0\), show that the R-W metric line element becomes
\[
c^2 d\tau^2 = c^2 dt^2 - c^2 t^2 [dr^2 + \sinh^2 rd\psi^2]
\]
For \(\rho = p = 0\) and \(k = -1\), the Friedmann equation is
\[
\dot{R}^2 = c^2
\]
which implies that \(\dot{R} = ct\). Substitution into the R-W line element yields
\[
c^2 d\tau^2 = c^2 dt^2 - c^2 t^2 [dr^2 + \sinh^2 rd\psi^2]
\]

3. Relativistic Velocities
(a) Show that the general relativistic relation between recession velocity and cosmological redshift is
\[
v_{rec}(t, z) = \frac{c}{R_0} \frac{\dot{R}(t)}{H(z)} \int_0^z \frac{dz'}{H(z')}
\]
where $H(z')$ is the Hubble constant at redshift z'.

The recession velocity is the time derivative of the proper distance. For RW metric,

$$ds^2 = -c^2 dt^2 + R^2(t) [dr^2 + S_k(r)d\psi^2]$$

where r is the dimensionless comoving radial coordinate. The proper distance to an object is along a surface of constant time, $dt = 0$, thus $ds = Rdr$. Integrating over the line of sight yields the time-dependent proper distance

$$D(t) = R(t)r$$

The recession velocity is therefore

$$v(t, z) = \dot{R}(t)r(z) = H(t)D(t)$$

which is Hubble’s law. Now, what is $r(z)$? Use the metric again. When we observe an object, we see a photon that travelled along the line of sight, which is a null geodesic and has $ds = 0$ and $d\psi = 0$. Thus

$$cdt = R(t)dr$$

The comoving coordinate of an object seen from photons that it emitted at time t_{emit} is

$$r(t_{emit}) = c \int_{t_{emit}}^{t_0} \frac{dt'}{R(t')}$$

The scale factor is related to redshift by

$$1 + z = \frac{R_0}{R(t)}$$

thus

$$\frac{dt}{R(t)} = -\frac{dz}{R_0 H(z)}$$

where we substituted $H(z) = \dot{R}/R$. Now put this all together,

$$r(z) = \frac{c}{R_0} \int_0^z \frac{dz'}{H(z')}$$

and multiply by $\dot{R}(t)$ to get the relation between proper distance and redshift. Note carefully that the general relativistic recession velocity depends on both redshift and time. At fixed t_0, the redshift z uniquely specifies the comoving coordinate $r(z)$ from the observer to the object. The recession velocity of that object depends on the time t, through the varying rate of change of the scale factor, $R(t)$. If you want to know “at what rate is the object receding from us now?” then you want $v(z, t_0)$. If you want to know, “at what rate was the object receding when it emitted the light we now observe?” then you want $v(z, t_{emit})$.

(b) Show that the special relativistic relation between peculiar velocity and redshift is

$$v_{pec}(z) = c \frac{(1+z)^2 - 1}{(1+z)^2 + 1}$$
Given the relativistic Doppler formula

\[1 + z = \sqrt{\frac{1 + v/c}{1 - v/c}} \]

you can algebraically solve for this form.

(c) Show that both relativistic relations are approximately \(v \approx cz \) at small distance.

At small \(z \), the Hubble constant is “constant,” thus integral in the general relativistic expression is simply

\[v_{\text{rec}} = \frac{c}{R_0} \frac{\dot{R}_0}{H_0} z = cz \]

because \(H_0 \equiv \dot{R}_0/R_0 \).

For the special relativistic case, expand the \((1 + z)^2\) terms, keeping only the leading order terms in the numerator and denominator yields,

\[v(z) = \frac{2z}{2} = cz \]

Because the general and special relativistic relations have the same low-redshift approximation some (otherwise very smart) people have mistakenly used the special relativistic form to interpret cosmological redshifts. This is wrong; cosmological recession velocities can be larger than the speed of light. No object is moving at superluminal speed through a Lorentz frame and no information exceeds the speed of light.

4. Particle Horizon

Following the suggestions outlined on pp. 85-86 of the text, show that the dominant form of mass-energy at early times must scale as \(\rho \propto R^{-\alpha} \) with \(\alpha > 2 \) for a particle horizon to exist.

A photon follows a null geodesic, i.e., \(d\tau = 0 \), therefore the RW metric yields

\[c^2 dt^2 = R^2 dr^2 \]

The coordinate distance \(r \) that a photon travels is then

\[r = \int_{t_0}^{t_1} \frac{cdt}{R(t)} \]

We can rewrite this integral by making the trivial substition

\[dt = dR \frac{dt}{dR} = \frac{dR}{R} \]

The Friedmann equation at early times behaves like that of a flat universe, with \(k = 0 \),

\[\left(\frac{\dot{R}}{R} \right)^2 = \frac{8\pi G}{3} \rho \]
which yields

$$\dot{R} \propto \sqrt{\rho R^2}$$

Let the density evolve as a power law $\rho \propto R^{-\alpha}$, and substitute into the equation integral, thus

$$r = \int_{R(t_0)}^{R(t_1)} \frac{dR}{R^{2-\alpha/2}} \propto R^{\alpha/2-1}|R(t_1)|_{R(t_0)}$$

To find out how far a photon could travel since the beginning of the universe, we are interested in the limit $t_0 \to 0$, which is the same as $R(t_0) \to 0$. The integral converges if $\alpha \geq 2$, but diverges if $\alpha < 2$. At early times, the universe is radiation dominated and has $\alpha = 4$, the integral does indeed converge and photons travel a finite distance, thus a particle horizon exists (this would also be true even if the universe were matter dominated at early times, because $\alpha = 3$ for matter).

5. Evolution of $\Omega_{\text{matter}}, \Omega_{\text{vac}}$

Compute how the density parameters Ω_{matter} and Ω_{vac} evolve with time in different cosmologies and plot the results on a figure like 3.5 on p. 83. In other words, for each choice of $\Omega_{\text{matter}}, \Omega_{\text{vac}}$ today, plot the trajectory of the model backwards in time to where it would lie in that same diagram at $t \approx 0$. On the plot, clearly indicate which end of each curve is now and which is at $t = 0$. Pick models from all regions of the diagram and be sure to include the following (in other words, do more than just these):

- $\Omega_{\text{matter}} = 1, \Omega_{\text{vac}} = 0$
- $\Omega_{\text{matter}} = 0.2, \Omega_{\text{vac}} = 0$
- $\Omega_{\text{matter}} = 0.3, \Omega_{\text{vac}} = 0.7$

The density of the components vary with the scale factor of the universe as $\rho_{\text{rad}} \propto R^{-4}, \rho_{\text{matter}} \propto R^{-3}, \rho_{\text{vac}} = \text{constant}$. Each component $i = \{\text{matter, radiation, vacuum}\}$ of the mass-energy density has a dimensionless density parameter $\Omega_i = \rho_i / \rho_{\text{crit}}$ where $\rho_{\text{crit}} = 3H^2/8\pi G$. Thus, Ω_i implicitly varies with the scale factor through the dependence of the Hubble parameter on the scale factor. This dependence is shown by a form of the Friedmann equation,

$$H^2(a) = H_0^2[\Omega_{\text{vac}} + \Omega_{\text{matter}}a^{-3} + \Omega_{\text{rad}}a^{-4} - (\Omega - 1)a^{-2}]$$

where $\Omega = \Omega_{\text{rad}} + \Omega_{\text{vac}} + \Omega_{\text{matter}}$ and $a = R/R_0$. Given Ω_{vac} and Ω_{matter} today, you can now compute Ω_i as a function of a where $a = 1$ is the present epoch and the limit $a \to 0$ corresponds to $t \to 0$. For a mass-energy component that scales with a as $\rho_i = \rho_{0,i}a^{-\alpha}$, combining the relations above leads to the formula

$$\Omega_i = \frac{\Omega_{0,i}a^{-\alpha}}{[\Omega_{\text{vac}} + \Omega_{\text{matter}}a^{-3} + \Omega_{\text{rad}}a^{-4} - (\Omega - 1)a^{-2}]}$$

where $\Omega_{0,i}$ is the value of the density parameter today. For the purpose of this problem, you can ignore radiation. Now pick some values for $\Omega_{\text{matter}}, \Omega_{\text{vac}}$ today and draw the curves by slowly varying a from 1 back to near 0.

In my plot (see attached) I put a “0” at $t = \text{now}$ for each curve. Note that ALL of the curves converge to $\Omega_{\text{matter}} = 1, \Omega_{\text{vac}} = 0$ at $t = 0$. Thus, at early times, all universes look like Einstein-de Sitter. Also note that “flat” models stay flat (evolve along a straight line with $\Omega =$
closed models stay closed, and open models stay open, but that acceleration/deceleration
(compare to the line where $q_0 = 0$) varies with time. For example, our favorite model,
$\Omega_{\text{matter}} = 0.3, \Omega_{\text{vac}} = 0.7$ began as decelerating and crossed over to accelerating at $z = 0.6$.