next up previous
Next: Bibliography Up: cantilever_calib Previous: 4 Contour integration

Subsections


5 Integrals

5.1 Highly damped integral

$\displaystyle I$ $\displaystyle = \ensuremath{\int_{0}^{\infty} {\frac{1}{k^2 + z^2}} \dd{z}}$ (66)
  $\displaystyle = \frac{1}{2} \ensuremath{\int_{-\infty}^{\infty} {\frac{1}{k^2 + z^2}} \dd{z}}$ (67)
  $\displaystyle = \frac{1}{2k} \ensuremath{\int_{-\infty}^{\infty} {\frac{1}{u^2+1}} \dd{u}}$ (68)

where $ u \equiv z/k$, $ du = dz/k$. There are simple poles at $ u = \pm i$

$\displaystyle I$ $\displaystyle = \frac{1}{2k} \cdot 2 \pi i \operatorname{Res}\left({z=i},{f(u)}\right)$ (69)
  $\displaystyle = \frac{1}{2k} \cdot \frac{2 \pi i}{i+i}$ (70)
  $\displaystyle = \frac{1}{2k} \pi$ (71)
  $\displaystyle = \frac{\pi}{2 k},$ (72)

5.2 General case integral

We will show that for any $ (a,b > 0) \in \ensuremath{\mathbb{R}}$

$\displaystyle I = \ensuremath{\int_{-\infty}^{\infty} {\frac{1}{(a^2-z^2) + b^2 z^2}} \dd{z}} = \frac{\pi}{b a^2}.$ (73)

First we note that $ \vert f(z)\vert \rightarrow 0$ like $ \vert z^{-4}\vert$ for $ \vert z\vert \gg 1$, and that $ f(z)$ is even, so

$\displaystyle I = \ensuremath{\int_{\ensuremath{\mathcal{C}}}^{} {\frac{1}{(a^2-z^2)^2 + b^2 z^2}} \dd{z}},$ (74)

where $ \mathcal{C}$ is the contour shown in Figure 1.

Because the denominator is of the form $ A^2 + B^2$, we can factor it into $ (A+iB)(A-iB)$ like so

$\displaystyle (a^2-z^2)^2 + b^2 z^2 = (a^2-z^2 \textcolor{Red}{+} ibz)(a^2-z^2 \textcolor{Red}{-} ibz)$ (75)

And the roots of $ z^2 \textcolor{Red}{\pm} ibz - a^2$

$\displaystyle z_{r\textcolor{Blue}{\pm}}$ $\displaystyle = \textcolor{Red}{\pm}\frac{ib}{2} \left( 1 \textcolor{Blue}{\pm} \sqrt{1-4\frac{-a^2}{(ib)^2}} \right)$ (76)
  $\displaystyle = \pm\frac{ib}{2} \left( 1 \pm \sqrt{1-4\frac{a^2}{b^2}} \right)$ (77)
  $\displaystyle = \pm\frac{ib}{2} \left( 1 \pm S \right)$ (78)

Where $ S \equiv \sqrt{1-4\frac{a^2}{b^2}}$.

To determine the nature and locations of the roots, consider the following cases (in order of increasing $ a$).

In the overdamped case $ S \in \ensuremath{\mathbb{R}}$ and $ S > 0$, so $ z_{r\pm}$ is purely imaginary, and $ z_{r+} != z_{r-}$. For any $ a < b/2$, we have $ 0 < S < 1$, so $ \ensuremath{\operatorname{Im}}(z_{r\pm}) > 0$. Thus, there are two single poles in the upper half plane ($ z_{r\pm}$), and two single poles in the lower half plane ($ -z_{r\pm}$).

In the critically damped case $ S = 0$, so $ z_{r+} = z_{r-}$, and we have double poles at $ \pm z_{r+} = \frac{ib}{2}$.

In the underdamped case $ S$ is purely imaginary, so $ z_{r\pm}$ is complex, with $ z_{r+}$ in the 2 $ ^{\mathrm{nd}}$quarter, and $ z_{r-}$ in the 1 $ ^{\mathrm{st}}$quarter. The other two simple poles, $ -z_{r-}$ and $ -z_{r+}$, are in the 3 $ ^{\mathrm{rd}}$and 4 $ ^{\mathrm{th}}$quarters respectively.

Our contour $ \mathcal{C}$ always encloses the poles $ z_{r\pm}$. We will deal with the simple pole cases first, and then return to the critically damped case.

5.2.1 Over- and under-damped

Our factored function $ f(z)$ is

$\displaystyle f(z) = \frac{1}{(z-z_{r+})(z+z_{r+})(z+z_{r-})(z-z_{r-})}$ (79)

Applying eq. 63 and 64 we have

$\displaystyle I$ $\displaystyle = 2\pi i \left( \operatorname{Res}\left({z=z_{r+}},{f(z)}\right) + \operatorname{Res}\left({z=z_{r-}},{f(z)}\right) \right)$ (80)
  $\displaystyle = 2\pi i \left( \frac{1}{ (z_{r+}+z_{r+}) \textcolor{Red}{(z_{r+}...
...{1}{ \textcolor{Red}{(z_{r-}-z_{r+}) (z_{r-}+z_{r+})} (z_{r-}+z_{r-}) } \right)$ (81)
  $\displaystyle = \frac{\pi i}{\textcolor{Red}{z_{r+}^2-z_{r-}^2}} \left( \frac{1}{z_{r+}} \textcolor{Red}{-} \frac{1}{z_{r-}} \right)$ (82)
  $\displaystyle = \frac{\pi i}{ \left( \textcolor{Blue}{\frac{ib}{2}} (1+S) \righ...
...{Blue}{\frac{ib}{2}} (1-S) \right)^2 } \cdot \frac{z_{r-}-z_{r+}}{z_{r+}z_{r-}}$ (83)
  $\displaystyle = \frac{\textcolor{Blue}{-4}\pi i / \textcolor{Blue}{b^2}}{ (1+2S...
...[(1-S) - (1+S)] } { \left(\frac{ib}{2}\right)^{\textcolor{Red}{2}} (1+S)(1-S) }$ (84)
  $\displaystyle = \frac{-8\pi / b^3}{ 4S } \cdot \frac{-2S} {(1 - S^2)}$ (85)
  $\displaystyle = \frac{ 4\pi }{ b^3 (1 - S^2)}$ (86)
  $\displaystyle = \frac{ 4\pi }{ b^3 [1 - (1-4\frac{a^2}{b^2})]}$ (87)
  $\displaystyle = \frac{ 4\pi }{ b^3 \cdot 4\frac{a^2}{b^2}}$ (88)
  $\displaystyle = \frac{ \pi }{ b a^2 }$ (89)

Hooray!

5.2.2 Critically damped

Our factored function $ f(z)$ is

$\displaystyle f(z) = \frac{1}{(z-z_{r+})^2(z-z_{r-})^2}$ (90)

Applying eq. 63 and 65 we have

$\displaystyle I$ $\displaystyle = 2\pi i \operatorname{Res}\left({z=z_{r+}},{f(z)}\right)$ (91)
  $\displaystyle = \textcolor{Red}{2}\pi i \left( \textcolor{Red}{\frac{1}{2!}} \lim_{z \rightarrow {z_{r+}}} \deriv{z}{} \frac{1}{(z + z_{r+})^2} \right)$ (92)
  $\displaystyle = \pi i \lim_{z \rightarrow {z_{r+}}} -2 \cdot \frac{1}{(z_{r+} + z_{r+})^3}$ (93)
  $\displaystyle = - 2 \pi i \frac{1}{z_{r+}^3}$ (94)
  $\displaystyle = \textcolor{Red}{-} 2 \pi \textcolor{Red}{i} \frac{1}{(\frac{\textcolor{Red}{i}b}{2})^3}$ (95)
  $\displaystyle = \frac{\pi}{b (\frac{b}{2})^2}$ (96)
  $\displaystyle = \frac{\pi}{b a^2},$ (97)

which matches eq. 90


next up previous
Next: Bibliography Up: cantilever_calib Previous: 4 Contour integration
Download cantilever_calib.pdf
View the source files or my .latex2html-init configuration file

5 Integrals
Copyright © 2009-10-12, W. Trevor King (contact)
Released under the GNU Free Document License, Version 1.2 or later
Drexel Physics