next up previous
Next: 3 Theoretical power spectral Up: cantilever_calib Previous: 1 Overview

Subsections

2 Methods

To find $ \avg{x^2}$, the raw photodiode voltages $ V_p(t)$ are converted to distances $ x(t)$ using the photodiode sensitivity $ \sigma_p$ (the slope of the voltage vs. distance curve of data taken while the tip is in contact with the surface) via

$\displaystyle x(t) = \frac{V_p(t)}{\sigma_p}$ (5)

Rather than computing the variance of $ x(t)$ directly, we attempt to filter out noise by fitting the spectral power density ( $ \operatorname{PSD}$) of $ x(t)$ to the theoretically predicted $ \operatorname{PSD}$ for a damped harmonic oscillator (eq. 53)

$\displaystyle \ddt{x} + \beta\dt{x} + \omega_0^2 x$ $\displaystyle = \frac{F_\text{thermal}}{m}$ (6)
$\displaystyle \ensuremath{\operatorname{PSD}}(x, \omega)$ $\displaystyle = \frac{G_1}{(\omega_0^2-\omega^2)^2 + \beta^2\omega^2},$ (7)

where $ G_1\equiv G_0/m^2$, $ \omega_0$, and $ \beta$ are used as the fitting parameters (see eqn.s 53). The variance of $ x(t)$ is then given by eq. 59

$\displaystyle \avg{x(t)^2} = \frac{\pi G_1}{2\beta\omega_0^2},$ (8)

which we can plug into the equipartition theorem (eqn. 1) yielding

$\displaystyle k = \frac{2 \beta \omega_0^2 k_BT}{\pi G_1}.$ (9)

From eqn. 61, we find the expected value of $ G_1$ to be

$\displaystyle G_1 \equiv G_0/m^2 = \frac{2}{\pi m} k_BT \beta.$ (10)

2.1 Fitting deflection voltage directly

In order to keep our errors in measuring $ \sigma_p$ seperate from other errors in measuring $ \avg{x(t)^2}$, we can fit the voltage spectrum before converting to distance.

$\displaystyle \ddt{V_p}/\sigma_p + \beta\dt{V_p}/\sigma_p + \omega_0^2 V_p/\sigma_p$ $\displaystyle = F_$thermal (11)
$\displaystyle \ddt{V_p} + \beta\dt{V_p} + \omega_0^2 V_p$ $\displaystyle = \sigma_p\frac{F_\text{thermal}}{m}$ (12)
$\displaystyle \ddt{V_p} + \beta\dt{V_p} + \omega_0^2 V_p$ $\displaystyle = \frac{F_\text{thermal}}{m_p}$ (13)
$\displaystyle \ensuremath{\operatorname{PSD}}(V_p, \omega)$ $\displaystyle = \frac{G_{1p}} { (\omega_0^2-\omega^2)^2 + \beta^2\omega^2 }$ (14)
$\displaystyle \avg{V_p(t)^2}$ $\displaystyle = \frac{\pi G_{1p}}{2\beta\omega_0^2} = \frac{\pi \sigma_p^2 G_{1}}{2\beta\omega_0^2} = \sigma_p^2 \avg{x(t)^2},$ (15)

where $ m_p\equiv m/\sigma_p$, $ G_{1p}\equiv G_0/m_p^2=\sigma_p^2 G_1$. Plugging into the equipartition theorem yeilds

$\displaystyle k$ $\displaystyle = \frac{\sigma_p^2 k_BT}{\avg{V_p(t)^2}} = \frac{2 \beta\omega_0^2 \sigma_p^2 k_BT}{\pi G_{1p}}.$ (16)

From eqn. 10, we find the expected value of $ G_{1p}$ to be

$\displaystyle G_{1p} \equiv \sigma_p^2 G_1 = \frac{2}{\pi m} \sigma_p^2 k_BT \beta.$ (17)

2.2 Fitting deflection voltage in frequency space

Note: the math in this section depends on some definitions from section 3.

As yet another alternative, you could fit in frequency $ f\equiv\omega/2\pi$ instead of angular frequency $ \omega$. But we must be careful with normalization. Comparing the angular frequency and normal frequency unitary Fourier transforms

$\displaystyle \ensuremath{{\mathcal F}\left\{ {x(t)} \right\}}(\omega)$ $\displaystyle \equiv \frac{1}{\sqrt{2\pi}} \ensuremath{\int_{-\infty}^{\infty} {x(t) e^{-i \omega t}} \dd{t}}$ (18)
$\displaystyle \ensuremath{{\mathcal F}_f\left\{ {x(t)} \right\}}(f)$ $\displaystyle \equiv \ensuremath{\int_{-\infty}^{\infty} {x(t) e^{-2\pi i f t}}...
...sqrt{2\pi}\cdot\ensuremath{{\mathcal F}\left\{ {x(t)} \right\}}(\omega=2\pi f),$ (19)

from which we can translate the $ \operatorname{PSD}$

$\displaystyle \ensuremath{\operatorname{PSD}}(x, \omega)$ $\displaystyle \equiv \ensuremath{\lim_{{t_T}\rightarrow \infty}}\frac{1}{t_T} ...
...\vert{ \ensuremath{{\mathcal F}\left\{ {x(t)} \right\}}(\omega) }\right\vert^2}$ (20)
$\displaystyle \ensuremath{\operatorname{PSD}}_f(x, f)$ $\displaystyle \equiv \ensuremath{\lim_{{t_T}\rightarrow \infty}}\frac{1}{t_T} ...
...pi f) }\right\vert^2} = 2\pi \ensuremath{\operatorname{PSD}}(x, \omega=2\pi f).$ (21)

The variance of the function $ x(t)$ is then given by plugging into eqn. 34 (our corollary to Parseval's theorem)

$\displaystyle \avg{x(t)^2}$ $\displaystyle = \ensuremath{\int_{0}^{\infty} {\ensuremath{\operatorname{PSD}}(...
...\ensuremath{\int_{0}^{\infty} {\ensuremath{\operatorname{PSD}}_f(x,f)} \dd{f}}.$ (22)

Therefore

$\displaystyle \ensuremath{\operatorname{PSD}}_f(V_p, f)$ $\displaystyle = 2\pi\ensuremath{\operatorname{PSD}}(V_p,\omega) = \frac{2\pi G_...
...2 4\pi^2f^2} = \frac{G_{1p}/8\pi^3}{(f_0^2-f^2)^2 + \frac{\beta^2 f^2}{4\pi^2}}$ (23)
  $\displaystyle = \frac{G_{1f}}{(f_0^2-f^2)^2 + \beta_f^2 f^2}$ (24)
$\displaystyle \avg{V_p(t)^2}$ $\displaystyle = \frac{\pi G_{1f}}{2\beta_f f_0^2}.$ (25)

where $ f_0\equiv\omega_0/2\pi$, $ \beta_f\equiv\beta/2\pi$, and $ G_{1f}\equiv G_{1p}/8\pi^3$. Finally

$\displaystyle k$ $\displaystyle = \frac{\sigma_p^2 k_BT}{\avg{V_p(t)^2}} = \frac{2 \beta_f f_0^2 \sigma_p^2 k_BT}{\pi G_{1f}}.$ (26)

From eqn. 10, we expect $ G_{1f}$ to be

$\displaystyle G_{1f} = \frac{G_{1p}}{8\pi^3} = \frac{\sigma_p^2 G_1}{8\pi^3} = ...
...\pi m} \sigma_p^2 k_BT \beta}{8\pi^3} = \frac{\sigma_p^2 k_BT \beta}{4\pi^4 m}.$ (27)


next up previous
Next: 3 Theoretical power spectral Up: cantilever_calib Previous: 1 Overview
Download cantilever_calib.pdf
View the source files or my .latex2html-init configuration file

2 Methods
Copyright © 2009-10-12, W. Trevor King (contact)
Released under the GNU Free Document License, Version 1.2 or later
Drexel Physics