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1 Overview

In order to measure forces accurately with an Atomic Force Microscope (AFM), it is important to measure the cantilever spring constant.
The force exerted on the cantilever can then be deduced from it’s deflection via Hooke’s law F =−kx.

The basic idea is to use the equipartition theorem[1],
1
2

k
〈
x2〉=

1
2

kBT, (1)

where kB is Boltzmann’s constant, T is the absolute temperature, and
〈
x2
〉

denotes the expectation value of x2 as measured over a very
long interval tT ,

〈A〉 ≡ lim
tT→∞

1
tT

Z tT /2

−tT /2
Adt. (2)

Solving the equipartition theorem for k yields

k =
kBT
〈x2〉

, (3)

so we need to measure (or estimate) the temperature T and variance of the cantilever position
〈
x2
〉

in order to estimate k.

1.1 Related papers

Various corrections taking into acount higher order modes [2, 8], and cantilever tilt [9] have been proposed and reviewed [5, 6, 7], but we
will focus here on the derivation of Lorentzian noise in damped simple harmonic oscillators that underlies all frequency-space methods
for improving the basic k

〈
x2
〉

= kBT method.

Roters and Johannsmann describe a similar approach to deriving the Lorentizian power spectral density[3].

WARNING: It is popular to refer to the power spectral density as a “Lorentzian”[1, 3, 6, 5] even though eq. 53 differs from the classic
Lorentzian[4].

L(x) =
1
π

1
2 Γ

(x− x0)2 +
( 1

2 Γ
)2 (4)

It is unclear whether the references are due to uncertainty about the definition of the Lorentzian or to the fact that eq. 53 is also peaked.
In order to avoid any uncertainty, we will leave eq. 53 unnamed.

2 Methods

To find
〈
x2
〉
, the raw photodiode voltages Vp(t) are converted to distances x(t) using the photodiode sensitivity σp (the slope of the

voltage vs. distance curve of data taken while the tip is in contact with the surface) via

x(t) =
Vp(t)

σp
(5)

Rather than computing the variance of x(t) directly, we attempt to filter out noise by fitting the spectral power density (PSD) of x(t) to
the theoretically predicted PSD for a damped harmonic oscillator (eq. 53)

ẍ+βẋ+ω
2
0x =

Fthermal

m
(6)

PSD(x,ω) =
G1

(ω2
0−ω2)2 +β2ω2

, (7)
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where G1 ≡ G0/m2, ω0, and β are used as the fitting parameters (see eqn.s 53). The variance of x(t) is then given by eq. 59〈
x(t)2〉=

πG1

2βω2
0
, (8)

which we can plug into the equipartition theorem (eqn. 1) yielding

k =
2βω2

0kBT
πG1

. (9)

From eqn. 61, we find the expected value of G1 to be

G1 ≡ G0/m2 =
2

πm
kBT β. (10)

2.1 Fitting deflection voltage directly

In order to keep our errors in measuring σp seperate from other errors in measuring
〈
x(t)2

〉
, we can fit the voltage spectrum before

converting to distance.

V̈p/σp +βV̇p/σp +ω
2
0Vp/σp = Fthermal (11)

V̈p +βV̇p +ω
2
0Vp = σp

Fthermal

m
(12)

V̈p +βV̇p +ω
2
0Vp =

Fthermal

mp
(13)

PSD(Vp,ω) =
G1p

(ω2
0−ω2)2 +β2ω2

(14)

〈
Vp(t)2〉=

πG1p

2βω2
0

=
πσ2

pG1

2βω2
0

= σ
2
p
〈
x(t)2〉 , (15)

where mp ≡ m/σp, G1p ≡ G0/m2
p = σ2

pG1. Plugging into the equipartition theorem yeilds

k =
σ2

pkBT
〈Vp(t)2〉

=
2βω2

0σ2
pkBT

πG1p
. (16)

From eqn. 10, we find the expected value of G1p to be

G1p ≡ σ
2
pG1 =

2
πm

σ
2
pkBT β. (17)

2.2 Fitting deflection voltage in frequency space

Note: the math in this section depends on some definitions from section 3.

As yet another alternative, you could fit in frequency f ≡ ω/2π instead of angular frequency ω. But we must be careful with normaliza-
tion. Comparing the angular frequency and normal frequency unitary Fourier transforms

F {x(t)}(ω)≡ 1√
2π

Z
∞

−∞

x(t)e−iωtdt (18)

F f {x(t)}( f )≡
Z

∞

−∞

x(t)e−2πi f tdt =
Z

∞

−∞

x(t)e−iωtdt =
√

2π ·F {x(t)}(ω = 2π f ), (19)

from which we can translate the PSD

PSD(x,ω)≡ lim
tT→∞

1
tT

2 |F {x(t)}(ω)|2 (20)

PSD f (x, f )≡ lim
tT→∞

1
tT

2
∣∣F f {x(t)}( f )

∣∣2 = 2π · lim
tT→∞

1
tT

2 |F {x(t)}(ω = 2π f )|2 = 2πPSD(x,ω = 2π f ). (21)
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The variance of the function x(t) is then given by plugging into eqn. 34 (our corollary to Parseval’s theorem)

〈
x(t)2〉=

Z
∞

0
PSD(x,ω)dω =

Z
∞

0

1
2π

PSD f (x, f )2π·d f =
Z

∞

0
PSD f (x, f )d f . (22)

Therefore

PSD f (Vp, f ) = 2πPSD(Vp,ω) =
2πG1p

(4π f 2
0 −4π2 f 2)2 +β24π2 f 2

=
2πG1p

16π4( f 2
0 − f 2)2 +β24π2 f 2

=
G1p/8π3

( f 2
0 − f 2)2 + β2 f 2

4π2

(23)

=
G1 f

( f 2
0 − f 2)2 +β2

f f 2
(24)

〈
Vp(t)2〉=

πG1 f

2β f f 2
0
. (25)

where f0 ≡ ω0/2π, β f ≡ β/2π, and G1 f ≡ G1p/8π3. Finally

k =
σ2

pkBT
〈Vp(t)2〉

=
2β f f 2

0 σ2
pkBT

πG1 f
. (26)

From eqn. 10, we expect G1 f to be

G1 f =
G1p

8π3 =
σ2

pG1

8π3 =
2

πm σ2
pkBT β

8π3 =
σ2

pkBT β

4π4m
. (27)

3 Theoretical power spectral density for a damped harmonic oscillator

Our cantilever can be approximated as a damped harmonic oscillator

mẍ+ γẋ+ kx = F(t), (28)

where x is the displacement from equilibrium, m is the effective mass, γ is the effective drag coefficient, k is the spring constant, and
F(t) is the external driving force. During the non-contact phase of calibration, F(t) comes from random thermal noise.

In the following analysis, we use the unitary, angular frequency Fourier transform normalization

F {x(t)} ≡ 1√
2π

Z
∞

−∞

x(t)e−iωtdt (29)

We also use the following theorems (proved elsewhere):

cos
(

θ

2

)
=±

√
1
2
[1+ cos(θ)] [10], (30)

F
{

dnx(t)
dtn

}
= (iω)nx(ω) [11], (31)Z

∞

−∞

|x(t)|2dt =
Z

∞

−∞

|x(w)|2dω (Parseval’s)[12]. (32)

As a corollary to Parseval’s theorem, we note that the one sided power spectral density per unit time (PSD) defined by

PSD(x,ω)≡ lim
tT→∞

1
tT

2 |x(ω)|2 [13] (33)

relates to the variance by

〈
x(t)2〉= lim

tT→∞

1
tT

Z tT /2

−tT /2
|x(t)|2dt = lim

tT→∞

1
tT

Z
∞

−∞

|x(ω)|2dω =
Z

∞

0
PSD(x,ω)dω, (34)

where tT is the total time over which data has been aquired.
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We also use the Wiener-Khinchin theorem, which relates the two sided power spectral density Sxx(ω) to the autocorrelation function
rxx(t) via

Sxx(ω) = F {rxx(t)} (Wiener-Khinchin)[14], (35)

where rxx(t) is defined in terms of the expectation value

rxx(t)≡ 〈x(τ)x(τ− t)〉 [15] (36)

and x represents the complex conjugate of x.

3.1 Highly damped case

For highly damped systems, the inertial term becomes insignificant (m→ 0). This model is commonly used for optically trapped beads.
Because it is simpler and solutions are more easily available, we’ll use it outline the general approach before diving into the general case.

Fourier transforming eq. 28 with m = 0 and applying 31 we have

(iγω+ k)x(ω) = F(ω) (37)

|x(ω)|2 =
|F(ω)|2

k2 + γ2ω2 . (38)

We compute the PSD by plugging eq. 38 into 33

PSD(x,ω) = lim
tT→∞

1
tT

2 |F(ω)|2

k2 + γ2ω2 . (39)

Because thermal noise is white (not autocorrelated + Wiener-Khinchin Theorem), we can denote the one sided thermal power spectral
density per unit time by

PSD(F,ω) = G0 = lim
tT→∞

1
tT

2 |F(ω)|2 (40)

Plugging eq. 40 into 39 we have

PSD(x,ω) =
G0

k2 + γ2ω2 . (41)

This is the formula we would use to fit our measured PSD, but let us go a bit farther to find the expected PSD and thermal noise given
m, γ and k.

Integrating over positive ω to find the total power per unit time yieldsZ
∞

0
PSD(x,ω)dω =

Z
∞

0

G0

k2 + γ2ω2 dω (42)

=
G0

γ

Z
∞

0

1
k2 + z2 dz (43)

=
G0π

2γk
, (44)

where the integral is solved in Section 5.

Plugging into our corollary to Parseval’s theorem (eq. 34), 〈
x(t)2〉=

G0π

2γk
(45)

Plugging eq. 45 into eqn. 1 we have

k
G0π

2γk
= kBT (46)

G0 =
2γkBT

π
. (47)

So we expect X(t) to have a power spectral density per unit time given by

PSD(x,ω) =
2
π
· γkBT

k2 + γ2ω2 . (48)
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3.2 General form

The procedure here is exactly the same as the previous section. The integral normalizing G0 just become a little more complicated. . .

Fourier transforming eq. 28 and applying 31 we have

(−mω
2 + iγω+ k)x(ω) = F(ω) (49)

(ω2
0−ω

2 + iβω)x(ω) =
F(ω)

m
(50)

|x(ω)|2 =
|F(ω)|2/m2

(ω2
0−ω2)2 +β2ω2

, (51)

where ω0 ≡
√

k/m is the resonant angular frequency and β≡ γ/m is the drag-acceleration coefficient.

We compute the PSD by plugging eq. 51 into 33

PSD(x,ω) = lim
tT→∞

1
tT

2|F(ω)|2/m2

(ω2
0−ω2)2 +β2ω2

. (52)

Plugging eq. 40 into 52 we have

PSD(x,ω) =
G0/m2

(ω2
0−ω2)2 +β2ω2

. (53)

Integrating over positive ω to find the total power per unit time yieldsZ
∞

0
PSD(x,ω)dω =

G0

2m2

Z
∞

−∞

1
(ω2

0−ω2)2 +β2ω2
dω (54)

=
G0

2m2 ·
π

βω2
0

(55)

=
G0π

2m2βω2
0

(56)

=
G0π

2m2β
k
m

(57)

=
G0π

2mβk
(58)

The integration is detailed in Section 5. By our corollary to Parseval’s theorem (eq. 34), we have〈
x(t)2〉=

G0π

2m2βω2
0

(59)

Plugging eq. 59 into the equipartition theorem (eqn. 1) we have

k
G0π

2mβk
= kBT (60)

G0 =
2
π

kBT mβ. (61)

So we expect x(t) to have a power spectral density per unit time given by

PSD(x,ω) =
2kBT β

πm
[
(ω2

0−ω2)2 +β2ω2
] (62)

4 Contour integration

As a brief review, some definite integrals from −∞ to ∞ can be evaluated by integrating along the contour C shown in Figure 1.
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Figure 1: Integral contour C enclosing the upper half plane.

A sufficient condition on the function f (z) to be integrated, is that lim|z|→∞ | f (z)| falls off at least as fast as 1
z2 . When this is the case, the

integral around the outer semicircle of C is 0, so the
R

C f (z)dz =
R

∞

−∞
f (z)dz.

We can evaluate the integral using residue theoremZ
C

f (x)dz = ∑
zp∈poles in C

2πiRes(z = zp, f (z)) , (63)

where for simple poles (single roots)
Res(z = zp, f (z)) = lim

z→zp
(z− zp) f (z), (64)

and in general for a pole of order n

Res(z = zp, f (z)) =
1

(n−1)!
· lim

z→zp

dn−1

dzn−1 [(z− zp)n · f (z)] (65)

5 Integrals

5.1 Highly damped integral

I =
Z

∞

0

1
k2 + z2 dz (66)

=
1
2

Z
∞

−∞

1
k2 + z2 dz (67)

=
1
2k

Z
∞

−∞

1
u2 +1

du (68)

(69)

where u≡ z/k, du = dz/k. There are simple poles at u =±i

I =
1
2k
·2πiRes(z = i, f (u)) (70)

=
1
2k
· 2πi

i+ i
(71)

=
1
2k

π (72)

=
π

2k
, (73)

5.2 General case integral

We will show that for any (a,b > 0) ∈ R

I =
Z

∞

−∞

1
(a2− z2)+b2z2 dz =

π

ba2 . (74)
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First we note that | f (z)| → 0 like |z−4| for |z| � 1, and that f (z) is even, so

I =
Z

C

1
(a2− z2)2 +b2z2 dz, (75)

where C is the contour shown in Figure 1.

Because the denominator is of the form A2 +B2, we can factor it into (A+ iB)(A− iB) like so

(a2− z2)2 +b2z2 = (a2− z2+ibz)(a2− z2−ibz) (76)

And the roots of z2±ibz−a2

zr± =± ib
2

(
1±

√
1−4

−a2

(ib)2

)
(77)

=± ib
2

(
1±
√

1−4
a2

b2

)
(78)

=± ib
2

(1±S) (79)

Where S≡
√

1−4 a2

b2 .

To determine the nature and locations of the roots, consider the following cases (in order of increasing a).

• a < b/2, overdamped.

• a = b/2, critically damped.

• a > b/2, underdamped.

In the overdamped case S∈R and S > 0, so zr± is purely imaginary, and zr+! = zr−. For any a < b/2, we have 0 < S < 1, so Im(zr±) > 0.
Thus, there are two single poles in the upper half plane (zr±), and two single poles in the lower half plane (−zr±).

In the critically damped case S = 0, so zr+ = zr−, and we have double poles at ±zr+ = ib
2 .

In the underdamped case S is purely imaginary, so zr± is complex, with zr+ in the 2ndquarter, and zr− in the 1stquarter. The other two
simple poles, −zr− and −zr+, are in the 3rdand 4thquarters respectively.

Our contour C always encloses the poles zr±. We will deal with the simple pole cases first, and then return to the critically damped case.

5.2.1 Over- and under-damped

Our factored function f (z) is

f (z) =
1

(z− zr+)(z+ zr+)(z+ zr−)(z− zr−)
(80)
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Applying eq. 63 and 64 we have

I = 2πi(Res(z = zr+, f (z))+Res(z = zr−, f (z))) (81)

= 2πi
(

1
(zr+ + zr+)(zr+ + zr−)(zr+− zr−)

+
1

(zr−− zr+)(zr−+ zr+)(zr−+ zr−)

)
(82)

=
πi

z2
r+− z2

r−

(
1

zr+
− 1

zr−

)
(83)

=
πi( ib

2 (1+S)
)2−

( ib
2 (1−S)

)2 ·
zr−− zr+

zr+zr−
(84)

=
−4πi/b2

(1+2S +S2)− (1−2S +S2)
·

ib
2 [(1−S)− (1+S)]( ib

2

)2
(1+S)(1−S)

(85)

=
−8π/b3

4S
· −2S
(1−S2)

(86)

=
4π

b3(1−S2)
(87)

=
4π

b3[1− (1−4 a2

b2 )]
(88)

=
4π

b3 ·4 a2

b2

(89)

=
π

ba2 (90)

Hooray!

5.2.2 Critically damped

Our factored function f (z) is

f (z) =
1

(z− zr+)2(z− zr−)2 (91)

Applying eq. 63 and 65 we have

I = 2πiRes(z = zr+, f (z)) (92)

= 2πi
(

1
2!

lim
z→zr+

d
dz

1
(z+ zr+)2

)
(93)

= πi lim
z→zr+

−2 · 1
(zr+ + zr+)3 (94)

=−2πi
1

z3
r+

(95)

=−2πi
1

( ib
2 )3

(96)

=
π

b( b
2 )2

(97)

=
π

ba2 , (98)

which matches eq. 90
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