
Homework 1
Chapters 12 and 13

Problem 1. It would take a huge potential energy barrier to confine an electron to the nucleus of an atom (diameter
d ≈ 10 fm). (a) Use the Heisenberg uncertainty principle to find the momentum uncertainty of such a bound electron. (b)
Use the monemtum uncertainty from (a) to find the minimum binding energy U . Note that the total energy E = K + U < 0
for a bound particle. You may use the non-relativistic form of kinetic energy even though it’s not particularly valid for this
situation.

(a) The uncertainty principle gives a lower bound on our momentum uncertainty ∆p
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(b) The momentum uncertainty puts a lower bound on the kinetic energy uncertainty ∆K.

p

K

∆p
∆K

∆K =
(∆p/2)2

2m
=

h̄2

32d2m
(3)

The binding potential must be at least this deep, or the electron would occasionally have enough kinetic energy to escape.

∆U < −∆K ≈ − h̄2

32d2m
= −3.8 pJ = −24 MeV . (4)

So the energy barrier is 24 MeV, which is much greater than the electron’s rest mass energy of 511 keV, so the electron would
be extremely relativistic. This is one reason why light particles such as electrons do not collapse into the nucleus of the atom,
despite the electromagnetic attraction to the protons.

Problem 2. The time/energy Heisenberg uncertainty principle is the source of an natural linewidth ∆λ in photons emitted
from atoms when electrons change orbitals. (a) Calculate the frequency of light emitted in the n2 → n1 transition for Hydrogen.
(b) Assuming that transition has an average lifetime of τ = 1.6 ns, estimate the relative uncertainty in the energy of the
emitted photon.
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(a) From the Rydberg formula
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= 3 · 108 m/s · 1.097 · 107 1/m

(
1− 1

4

)
= 2.47 · 1015 Hz (6)

(b) Using the energy/time uncertainty principle,
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(bonus) We can see find the natural linewidth ∆λ through a propagation-of-errors approach
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Since ∆E � E, this relationship doesn’t change much over the span of E ±∆E/2, so

∆λ ≈ −λ∆E
E
≥ 2.4 fm , (12)

where we dropped the sign because we only care about the range ∆λ, not whether increasing E increases or decreases λ.
Note that the propagation-of-errors approach would not work for Problem 1, since ∂K/∂p(p = 0) = 0. Therefore, assuming
the slope to be constant over the range ∆p would give ∆K = 0. Instead, we used a quasi-graphical approach that took
advantage of our understanding of K(p) = p2/2m.

Problem 3. In the particle-wave duality, localized particles are modeled as wave packets, with both a group speed and a
phase speed. Between Equations 28.13 and 28.16, the text shows that the group speed vg of a wave function ψ is the same as
the particle speed u. Treat the particle as a non-relativistic de Broglie wave, and use vp = λf to show that the phase speed
vp = u/2 6= u = vg.

Here’s a picture of the wave packet, just as a reminder of what we’re talking about.
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We start with the given definition of the phase velocity

vp = λf . (13)

DeBroglie tells us (Equations 28.10 and 28.11)
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Then we use the non-relativistic kinetic energy and momentum
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As a side note, I have no idea why the text uses u instead of v for Equation 28.16, but I though I should stick with it here
to avoid adding to the confusion.

Problem 4. An electron that has an energy of approximately 6 eV moves between rigid walls 1.00 nm apart. Find (a) the
quantum number n for the energy state that the electron occupies and (b) the precise energy of the electron.

(a) The allowed energy levels for a particle in a box are (Equation 28.30)
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. (20)



For an electron (m = 9.11 · 10−31 kg) in a box of length L = 1 nm, this works out to

E1 = 0.377 eV (21)
E2 = 1.51 eV (22)
E3 = 3.39 eV (23)
E4 = 6.02 eV (24)
E5 = 9.41 eV (25)

So the electron is in the n = 4 state.
(b) The precise energy is E4 = 6.02 eV.

Problem 5. The wave function for a particle confined to moving in a one-dimensional box is

ψ(x) = A sin
(nπx
L

)
(26)

Use the normalization condition to show that
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HINT: Because the box length is L, the wave function is zero for x < 0 and for x > L.
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where we used the fact that ψ(x) = 0 for x < 0 and x > L to reduce the range of integration, and the fact that ψ is real to
reduce ψψ2 = ψ2. So we must integrate
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where u ≡ πx/L, so dx = Ldu/π.
There are two possible approaches. The easiest way is to use symmetry. We’re integrating over multiples of half wavelengths
of sin (λ = 2π/n so π = nλ/2), so we’re integrating through full wavelengths of sin2. Over a full wavelength, the averages
< sin2 >=< cos2 >= 1/2 since sin2 + cos2 = 1. so
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The slightly harder way is to use the double-angle identity sin2(θ) = [1− cos(2θ)]/2.
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Problem 6. BONUS PROBLEM. Particles incident from the left are confronted with a step in potential energy. Located at
x = 0, the step has a height U . The particles have energy E > U . Classically, we would expect all the particles to continue
on, although with reduced speed. According to quantum mechanics, a fraction of the particles are reflected at the barrier.
Prove that the reflection coefficient R for this case is

R =
(k1 − k2)2

(k1 + k2)2
, (35)

where k1 = 2π/λ1 and k2 = 2π/λ2 are the wave numbers for the incident and transmitted particles. Proceed as follows.
Impose the boundary conditions ψ1 = ψ2 and dψ1/dx = dψ2/dx at x = 0 to find the relationships between B and A. Then
evaluate R = B2/A2.
Assume the wave function ψ1 = Aeik1x + Be−ik1x satisfies the Schrödinger equation in region 1, for x < 0. Also assume
that ψ2 = Ceik2x satisfies the Schrödinger equation in region 2, for x > 0. These assumptions will be derived in the posted
solutions in case you are interested, but they are pretty straightforward.
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Show that ψ1 satisfies the Schrödinger equation
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in region 1.
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So the Schrödinger equation is satisfied if
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Show that ψ2 satisfies the Schrödinger equation in region 2.

dψ2

dx
= ik2Ce

ik2x (41)

dψ2
2

dx2
= i2k2

2Ce
ik2x = −k2

2ψ . (42)
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Imposing the continuous ψ boundary condition

ψ1(x = 0) = ψ2(x = 0) → A+B = C (45)

Imposing the smooth ψ boundary condition
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Putting this together to find the reflection coefficient
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which is what we set out to show.


