Homework 1

Chapters 12 and 13
Problem 1. It would take a huge potential energy barrier to confine an electron to the nucleus of an atom (diameter $d \approx 10 \mathrm{fm})$. (a) Use the Heisenberg uncertainty principle to find the momentum uncertainty of such a bound electron. (b) Use the monemtum uncertainty from (a) to find the minimum binding energy U. Note that the total energy $E=K+U<0$ for a bound particle. You may use the non-relativistic form of kinetic energy even though it's not particularly valid for this situation.

Problem 2. The time/energy Heisenberg uncertainty principle is the source of an natural linewidth $\Delta \lambda$ in photons emitted from atoms when electrons change orbitals. (a) Calculate the frequency of light emitted in the $n_{2} \rightarrow n_{1}$ transition for Hydrogen. (b) Assuming that transition has an average lifetime of $\tau=1.6 \mathrm{~ns}$, estimate the relative uncertainty in the energy of the emitted photon.

Problem 3. In the particle-wave duality, localized particles are modeled as wave packets, with both a group speed and a phase speed. Between Equations 28.13 and 28.16, the text shows that the group speed v_{g} of a wave function ψ is the same as the particle speed u. Treat the particle as a non-relativistic de Broglie wave, and use $v_{p}=\lambda f$ to show that the phase speed $v_{p}=u / 2 \neq u=v_{g}$.

Problem 4. An electron that has an energy of approximately 6 eV moves between rigid walls 1.00 nm apart. Find (a) the quantum number n for the energy state that the electron occupies and (b) the precise energy of the electron.

Problem 5. The wave function for a particle confined to moving in a one-dimensional box is

$$
\begin{equation*}
\psi(x)=A \sin \left(\frac{n \pi x}{L}\right) \tag{1}
\end{equation*}
$$

Use the normalization condition to show that

$$
\begin{equation*}
A=\sqrt{\frac{2}{L}} \tag{2}
\end{equation*}
$$

HINT: Because the box length is L, the wave function is zero for $x<0$ and for $x>L$.

Problem 6. BONUS PROBLEM. Particles incident from the left are confronted with a step in potential energy. Located at $x=0$, the step has a height U. The particles have energy $E>U$. Classically, we would expect all the particles to continue on, although with reduced speed. According to quantum mechanics, a fraction of the particles are reflected at the barrier. Prove that the reflection coefficient R for this case is

$$
\begin{equation*}
R=\frac{\left(k_{1}-k_{2}\right)^{2}}{\left(k_{1}+k_{2}\right)^{2}} \tag{3}
\end{equation*}
$$

where $k_{1}=2 \pi / \lambda_{1}$ and $k_{2}=2 \pi / \lambda_{2}$ are the wave numbers for the incident and transmitted particles. Proceed as follows. Impose the boundary conditions $\psi_{1}=\psi_{2}$ and $d \psi_{1} / d x=d \psi_{2} / d x$ at $x=0$ to find the relationships between B and A. Then evaluate $R=B^{2} / A^{2}$.
Assume the wave function $\psi_{1}=A e^{i k_{1} x}+B e^{-i k_{1} x}$ satisfies the Schrödinger equation in region 1 , for $x<0$. Also assume that $\psi_{2}=C e^{i k_{2} x}$ satisfies the Schrödinger equation in region 2, for $x>0$. These assumptions will be derived in the posted solutions in case you are interested, but they are pretty straightforward.

