
Homework 4
Chapter 28

Problem 1. In Homework 3, you showed that the sun emits 3.87 · 1026 W of power. (a) Use Stefan’s law to calculate the
surface temperature at the photosphere (r = 6.96 · 108 m). (b) Estimate the power needed to produce the same spectrum
with an incandescent light bulb (i.e. to heat the bulb to the same temperature). Model the light bulb’s tungsten filament as a
cylinder 58.0 cm long and 45 µm in diameter with emissivity of 0.45. (c) Tungsten melts at 3695 K, so we cannot actually
operate the filament at the same temperature as the sun. What temperature is the filament from (b) if we only radiate at
60 W?
Because of their long length, tungsten filaments are usually coiled twice. See http: // en. wikipedia. org/ wiki/ Electrical_
filament for some nice pictures.
This problem is similar to P28.2 and P28.55.
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where we treat the sun as a black body (e = 1).
(b) Let the subscript w denote the tungsten filament and s denote the sun.
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Problem 2. A simple pendulum as a length of 2.00 m and a mass of 3.00 kg. The amplitude of oscillation is 5.00 cm.
Assuming that energy is quantized, calculate the quantum number of the pendulum.

Using Planck’s assumption that energy is quantized (Equation 28.2)
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Problem 3. Sodium has a work function of 2.46 eV. (a) Find the cutoff wavelength and cutoff frequency for the photoelectic
effect. (b) What is the stopping potential if the incident light has a wavelength of 440 nm?

(a) The cutoff wavelength is the wavelength where the incoming light has barely enough energy to free an electron, i.e. all of
the photon’s energy goes into overcoming the work function barrier.
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(b) The photon brings in hf , but much of that energy goes to overcoming the work function barrier. The left over energy
hf−φ becomes the electron’s kinetic energy. The stopping potential is the voltage change which matches that kinetic energy.

Kmax = hf − φ = h
c

λ
− φ = 5.98 · 10−20 J = 0.358 eV (13)

∆VS = Kmax/e = 0.374 V (14)

http://en.wikipedia.org/wiki/Electrical_filament
http://en.wikipedia.org/wiki/Electrical_filament


Problem 4. X-rays generation (e.g. for medical imaging) can be modeled as an inverse photoelectric effect (basically the
regular photoelectric effect played backwards in time). An electron beam is fired into an anode, which absorbs the electrons
and emits radiation (the X-rays). If the electrons are accelerated by 50 kV towards a Tungsten surface (φ = 4.5 eV), find the
wavelength of the emitted photons predicted by this model.

HINT. Follow the energy flow through the system. Ignore anode heating.

The kinetic energy of the incoming electrons (due to the accelerating voltage) is e∆V = 50 keV. They gain an additional
φ = 4.5 eV of energy while “dropping into” the lower energy bound states of the metal, but this energy is much less than the
energy from the accelerating voltage, so we’ll ignore it.
Assuming all the energy from the electons is converted into photons (since we’re ignoring anode heating), we get
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The production of X-rays in tubes is more accurately modeled as a combination of X-ray flourescence and bremsstrahlung.
Our “inverse photoelectric effect” prediction is the gives the shortest wavelength (highest frequency) of the emitted photons.
For more details, see http://en.wikipedia.org/wiki/X-ray#Medical_physics.

Problem 5. (a) What value of ni is associated with the 94.96 nm spectral line in the Lyman series of hydrogen? (b) Could
this wavelength be associated with the Paschen series or the Balmer series?

(a) The Lyman series transitions all end in the ground state nf = 1 Using the generalized Rydberg equation (Equation 11.28)
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(b) This wavelength cannot have come from the Balmer (nf = 2) or Paschen (nf = 3) series because the shortest wavelength
for any series is given in the limit that ni →∞

1
λmin

=
RH

n2
f

(20)

λmin =
n2

f

RH
. (21)

For the Balmer series λmin = 365 nm, and for the Paschen series λmin = 820 nm. Both of these series-minimum wavelengths
are larger than the wavelength of our spectral line.

Problem 6. BONUS PROBLEM. Use Bohr’s assumptions in Section 11.5 to derive a formula for the allowed energy levels
in singly ionized helium (He+).

Following the derivation of hydrogen energy levels in the book, we have our analog for Equation 11.19 (total energy of the
electron)
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where Z is the atomic number of our element (1 for H, 2 for He).
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Applying Newton’s second law and Coulomb’s law to the electron’s circular motion,
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so the kinetic energy of the electron is (our Equation 11.20 analog)
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Plugging this expression for K into eq. 22
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We can find the allowed value for r by substituting angular momentum conservation mevr = nh̄ into eq. 23
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which is our analog to Equation 11.22.
Plugging this expression for r into our electron energy forumula
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En,He = 22En,H = −54.42 eV
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which is our analog to Equation 11.25.
Note that the only difference between this derivation and the book’s hydrogen derivation is the replacement kee

2 → keZe
2

in Coulomb’s law. This is also the only place the constant e comes into the derivation. Simply matching and replacing e2

with Ze2 in Equations 11.23 and 11.24 would produce the correct answer without following every step of the derivation.


