Recitation 8

Chapter 19
Problem 58. A 45 V battery of negligable internal resistance is connected to a $38 \mathrm{k} \Omega$ and a $27 \mathrm{k} \Omega$ resistor in series. What reading will a voltmeter, of internal resistance $95 \mathrm{k} \Omega$, give when used to measure the voltage across each resistor? What is the percent inaccuracy due to meter resistance for each case?

Case 1:
The original situation looks like

Using Kirchoff's loop rule

$$
\begin{aligned}
V-I R_{1}-I R_{2} & =0 \\
I & =\frac{V}{R_{1}+R_{2}}
\end{aligned}
$$

so

$$
\begin{aligned}
& V_{1}=I R_{1}=\frac{V R_{1}}{R_{1}+R_{2}} \approx 26.3 \mathrm{~V} \\
& V_{2}=I R_{2}=\frac{V R_{2}}{R_{1}+R_{2}} \approx 18.7 \mathrm{~V}
\end{aligned}
$$

Case 2:
With the voltmeter across R_{1} we have

Using our formula for resistors in parallel, we can bundle R_{v} and R_{1} into a single resistor R_{1}^{\prime}, where

$$
R_{1}^{\prime}=\left(\frac{1}{R_{1}}+\frac{1}{R_{v}}\right)^{-1}=27.14285714 \ldots \mathrm{k} \Omega
$$

Once we've done that, we have the same situation as in Case 1, but with

$$
\begin{aligned}
R_{1} & \rightarrow R_{1}^{\prime} \\
I & \rightarrow I_{T}
\end{aligned}
$$

SO

$$
\begin{aligned}
V_{1}^{\prime} & =\frac{V R_{1}^{\prime}}{R_{1}^{\prime}+R_{2}}=\frac{V\left(\frac{1}{R_{1}}+\frac{1}{R_{v}}\right)^{-1}}{\left(\frac{1}{R_{1}}+\frac{1}{R_{v}}\right)^{-1}+R_{2}} \approx 22.6 \mathrm{~V} \\
\frac{V_{1}^{\prime}}{V_{1}} & =\frac{R_{1}^{\prime}\left(R_{1}+R_{2}\right)}{R_{1}\left(R_{1}^{\prime}+R_{2}\right)}=\frac{\left(\frac{1}{R_{1}}+\frac{1}{R_{v}}\right)^{-1} \cdot\left(R_{1}+R_{2}\right)}{R_{1} \cdot\left[\left(\frac{1}{R_{1}}+\frac{1}{R_{v}}\right)^{-1}+R_{2}\right]}=\frac{\left(\frac{R_{v}+R_{1}}{R_{1} R_{v}}\right)^{-1} \cdot\left(R_{1}+R_{2}\right)}{R_{1} \cdot\left[\left(\frac{R_{v}+R_{1}}{R_{1} R_{v}}\right)^{-1}+R_{2}\right]}=\frac{\frac{R_{1} R_{v}}{R_{v}+R_{1}} \cdot\left(R_{1}+R_{2}\right)}{R_{1} \cdot\left(\frac{R_{1} R_{v}}{R_{v}+R_{1}}+\frac{R_{2}\left(R_{v}+R_{1}\right)}{R_{v}+R_{1}}\right)} \\
& =\frac{R_{1} \frac{R_{v}\left(R_{1}+R_{2}\right)}{R_{v}+R_{1}}}{R_{1} \cdot\left(\frac{R_{1} R_{v}+R_{2}\left(R_{v}+R_{1}\right)}{R_{v}+R_{1}}\right)}=\frac{R_{v} R_{1}+R_{v} R_{2}}{R_{1} R_{v}+R_{2} R_{v}+R_{1} R_{2}}=\frac{R_{v}\left(R_{1}+R_{2}\right)}{R_{v}\left(R_{1}+R_{2}\right)+R_{1} R_{2}} \\
& =0.8575 \ldots
\end{aligned}
$$

Obviously, we could plug in known numbers and solve for $\frac{V_{1}^{\prime}}{V_{1}}$ after the first equality above, but crunching through some simplifying algebra reveals the pretty spectacular final form, from which you can trivially see that the fractional error in Case 3 will be the same as that for Case 2 .
Finally the percent error is given by

$$
\text { Error }_{1}=1-\frac{V_{1}^{\prime}}{V_{1}}=0.1425 \ldots \approx 14 \%
$$

Case 3:
With the voltmeter across R_{2} we have the same situation as Case 1, but with

$$
X_{1} \leftrightarrow X_{2}
$$

for any symbol X (i.e. $R_{1} \leftrightarrow R_{2}, \ldots$). However, the equation for error in V_{1}^{\prime} is not effected by this exchange, so

$$
\text { Error }_{2}=\text { Error }_{1} \approx 14 \%
$$

The voltage V_{2}^{\prime} measured is given by

$$
V_{2}^{\prime}=\frac{V R_{2}^{\prime}}{R_{2}^{\prime}+R_{1}}=\frac{V\left(\frac{1}{R_{2}}+\frac{1}{R_{v}}\right)^{-1}}{\left(\frac{1}{R_{2}}+\frac{1}{R_{v}}\right)^{-1}+R_{1}} \approx 16.0 \mathrm{~V}
$$

