Chapter 19: DC Circuits

Trevor King

Drexel University

October 15, 2008

DC circuits

- Direct Current (DC) circuits are important
 - often used in digital electronic devices and almost anything that is battery powered.
- The physics of DC currents is straightforward
 - · Kirchoff's loop rule
 - · Kirchoff's junction rule
 - Understanding the individual components
 - Resistors
 - Capacitors
 - ...

Kirchoff's loop rule

Kirchoff's junction rule

$$\sum_{ ext{junction}} I_i = 0$$
 Conserving charge, steady state

Elements in series

Two elements are in series if you cannot make a loop crossing one of them without also crossing the other.

Elements in parallel

Two elements are in parallel if you can make a loop crossing both of them which crosses no other elements.

Resistors in series

By Kirchoff's junction rule, $I_a = I_b$ (because there are no intervening junctions).

$$V_T = V_a + V_b = IR_a + IR_b = I(R_a + R_b)$$

 $V_T = IR_T$

So the effective resistance is give by

$$R_T = R_a + R_b$$

Resistors in parallel

By Kirchoff's loop rule, $V_a - V_b = 0$ so $V_a = V_b = V_T$. By Kirchoff's junction rule, $I_T = I_a + I_b$

$$V_T = I_a R_a = I_b R_b$$
 $I_b = I_a \frac{R_a}{R_b}$ $I_T = I_a + I_b = I_a (1 + R_a/R_b)$ $V_T = I_a R_a = \frac{I_T}{1 + R_a/R_b} R_a = I_T (1/R_a + 1/R_b)^{-1} = I_T R_T$

So the effective resistance is give by $R_T = (1/R_a + 1/R_b)^{-1}$

Capacitors in series

By Kirchoff's junction rule, $Q_a = Q_b = Q_T$ (because there are no intervening junctions).

$$V_T = V_a + V_b = Q_a/C_a + Q_b/C_b = Q_T(1/C_a + 1/C_b)$$

 $V_T = Q_T/C_T$

So the effective capacitance is give by

$$C_T = \left(\frac{1}{C_a} + \frac{1}{C_b}\right)^{-1}$$

Capacitors in parallel

By Kirchoff's loop rule, $V_a-V_b=0$ so $V_a=V_b=V_T$. By Kirchoff's junction rule, $Q_T=Q_a+Q_b$

$$Q_T = Q_a + Q_b = C_a V_T + C_b V_T = (C_a + C_b) V_T$$

 $Q_T = C_T V_T$

So the effective capacitance is give by $C_T = C_a + C_b$.

RC circuits

From Kirchoff's loop rule $\sum_{loop} V_i = \mathcal{E} - IR - Q/C = 0$. From the definition of current $I = \frac{\mathrm{d}Q}{\mathrm{d}t}$. So

$$\mathcal{E} - Q/C = R \frac{Q}{t}$$

$$dt = (\mathcal{E} - Q/C)^{-1} R dQ$$

$$Q = C \mathcal{E} \left(1 - e^{-t/RC} \right) \qquad V_C = \mathcal{E} \left(1 - e^{-t/RC} \right)$$