Chapter 19: DC Circuits

Trevor King

Drexel University

October 15, 2008

DC circuits

- Direct Current (DC) circuits are important
- often used in digital electronic devices and almost anything that is battery powered.
- The physics of DC currents is straightforward
- Kirchoff's loop rule
- Kirchoff's junction rule
- Understanding the individual components
- Resistors
- Capacitors
- ...

Kirchoff's loop rule

$\sum_{\text {loop }} \Delta V_{i}=0$
Conserving energy

Kirchoff's junction rule

Elements in series

Two elements are in series if you cannot make a loop crossing one of them without also crossing the other.

Elements in parallel

Two elements are in parallel if you can make a loop crossing both of them which crosses no other elements.

Resistors in series

By Kirchoff's junction rule, $I_{a}=I_{b}$ (because there are no intervening junctions).

$$
\begin{aligned}
& V_{T}=V_{a}+V_{b}=I R_{a}+I R_{b}=I\left(R_{a}+R_{b}\right) \\
& V_{T}=I R_{T}
\end{aligned}
$$

So the effective resistance is give by

$$
R_{T}=R_{a}+R_{b}
$$

Resistors in parallel

By Kirchoff's loop rule, $V_{a}-V_{b}=0$ so $V_{a}=V_{b}=V_{T}$. By Kirchoff's junction rule, $I_{T}=I_{a}+I_{b}$

$$
\begin{aligned}
V_{T} & =I_{a} R_{a}=I_{b} R_{b} \quad I_{b}=I_{a} \frac{R_{a}}{R_{b}} \\
I_{T} & =I_{a}+I_{b}=I_{a}\left(1+R_{a} / R_{b}\right) \\
V_{T} & =I_{a} R_{a}=\frac{I_{T}}{1+R_{a} / R_{b}} R_{a}=I_{T}\left(1 / R_{a}+1 / R_{b}\right)^{-1}=I_{T} R_{T}
\end{aligned}
$$

So the effective resistance is give by $R_{T}=\left(1 / R_{a}+1 / R_{b}\right)^{-1}$

Capacitors in series

By Kirchoff's junction rule, $Q_{a}=Q_{b}=Q_{T}$ (because there are no intervening junctions).

$$
\begin{aligned}
& V_{T}=V_{a}+V_{b}=Q_{a} / C_{a}+Q_{b} / C_{b}=Q_{T}\left(1 / C_{a}+1 / C_{b}\right) \\
& V_{T}=Q_{T} / C_{T}
\end{aligned}
$$

So the effective capacitance is give by

$$
C_{T}=\left(\frac{1}{C_{a}}+\frac{1}{C_{b}}\right)^{-1}
$$

Capacitors in parallel

By Kirchoff's loop rule, $V_{a}-V_{b}=0$ so $V_{a}=V_{b}=V_{T}$. By Kirchoff's junction rule, $Q_{T}=Q_{a}+Q_{b}$

$$
\begin{aligned}
& Q_{T}=Q_{a}+Q_{b}=C_{a} V_{T}+C_{b} V_{T}=\left(C_{a}+C_{b}\right) V_{T} \\
& Q_{T}=C_{T} V_{T}
\end{aligned}
$$

So the effective capacitance is give by $C_{T}=C_{a}+C_{b}$.

RC circuits

From Kirchoff's loop rule $\sum_{\text {loop }} V_{i}=\mathcal{E}-I R-Q / C=0$.
From the definition of current $I=\frac{\mathrm{d} Q}{\mathrm{~d} t}$.
So

$$
\begin{aligned}
\mathcal{E}-Q / C & =R \frac{Q}{t} \\
\mathrm{~d} t & =(\mathcal{E}-Q / C)^{-1} R \mathrm{~d} Q \\
Q & =C \mathcal{E}\left(1-e^{-t / R C}\right) \quad V_{C}=\mathcal{E}\left(1-e^{-t / R C}\right)
\end{aligned}
$$

