Recitation 1, additions

Ring electric field derivation

I said in my Wednesday class that I'd post a simple, non-calculus derivation of the formula giving the electric field along the axis of a charged ring, so here it is.

First, consider the situation where we have two charges $q_{A}=q_{B}=Q / 2$ instead of a ring.

The magnitude of the electric field generated by q_{A} at x is given by

$$
\begin{equation*}
E_{A}=k_{e} \frac{q_{A}}{d_{A}^{2}} \tag{1}
\end{equation*}
$$

and that of q_{B} by

$$
\begin{equation*}
E_{A}=k_{e} \frac{q_{A}}{d_{B}^{2}} \tag{2}
\end{equation*}
$$

From the Pythagorean theorem we have

$$
\begin{equation*}
d_{A}=d_{B}=\sqrt{r^{2}+x^{2}} \tag{3}
\end{equation*}
$$

From symmetry, we can see the electric field in the y direction cancels out, so our total electric field is given by

$$
\begin{equation*}
\mathbf{E}=2 k_{e} \frac{q_{A}}{d_{A}^{2}} \cos \theta \hat{\mathbf{i}}=2 k_{e} \frac{q_{A}}{d_{B}^{2}} \cos \theta \hat{\mathbf{i}}=k_{e} \frac{Q}{r^{2}+x^{2}} \cdot \frac{x}{\sqrt{r^{2}+x^{2}}} \hat{\mathbf{i}}=\frac{k_{e} Q x}{\left(r^{2}+x^{2}\right)^{3 / 2}} \hat{\mathbf{i}} \tag{4}
\end{equation*}
$$

where Q is the sum of the two charges.
Moving back to the ring, we see the same situation, with each little charge $d q$ having it's \mathbf{E}_{y} cancled out by an equal $d q$ directly across the ring. All that's left is the sum of the \mathbf{E}_{x}, which by the same argument as above is

$$
\begin{equation*}
\mathbf{E}=\frac{k_{e} Q x}{\left(r^{2}+x^{2}\right)^{3 / 2}} \hat{\mathbf{i}}, \tag{5}
\end{equation*}
$$

where Q is the total charge on the ring.
This matches up with the formula obtained following the derivation in Example 19.5 (p. 616).

