Recitation 8

Chapter 22
Problem 34. Two long, parallel conductors, separated by $r=10.0 \mathrm{~cm}$, carry current in the same direction. The first wire carries current $I_{1}=5.00 \mathrm{~A}$, and the second carries $I_{2}=8.00 \mathrm{~A}$. (a) What is the magnitude of the magnetic field B_{1} created by I_{1} at the location of I_{2} ? (b) What is the force per unit length exerted by I_{1} on I_{2} ? (c) What is the magnitude of the magnetic field B_{2} created by I_{2} at the location of I_{1} ? (d) What is the force per unit length exerted by I_{2} on I_{1} ?
(a) From Ampere's law, the B field generated by a long, thin current is

$$
\begin{equation*}
B=\frac{\mu_{0} I}{2 \pi r} \tag{1}
\end{equation*}
$$

Plugging in I_{1}, we have

$$
\begin{equation*}
B_{1}=\frac{\mu_{0} I_{1}}{2 \pi r}=10.0 \mu \mathrm{~T} \tag{2}
\end{equation*}
$$

This B field depends on your distance from I_{1}, but because the wires are parallel, the B field from I_{1} is constant along I_{2} We can use the right hand rule to determine that \mathbf{B}_{1} is perpendicular to both I_{1} and r.
(b) From $F_{B}=q \mathbf{v} \times \mathbf{B}$ we have the force on a current carrying wire in a uniform magnetic field as

$$
\begin{equation*}
F_{B}=I \mathbf{l} \times \mathbf{B} \tag{3}
\end{equation*}
$$

Combining these two equations, we have the force per unit length of I_{1} on I_{2} as

$$
\begin{equation*}
F_{B 12} / l=I_{2} B_{1}=\frac{\mu_{0} I_{1} I_{2}}{2 \pi r}=80.0 \mu \mathrm{~N} \tag{4}
\end{equation*}
$$

where there is no $\sin \theta$ term in the cross product, because B_{1} is perpendicular to I_{2}. By drawing the situation and doing some right hand rules, you can convince yourself that this force is attractive.
(c) Because the situation in (c) is identical to (a) with $I_{1} \leftrightarrow I_{2}$, we simply relabel eqn. 2.

$$
\begin{equation*}
B_{2}=\frac{\mu_{0} I_{2}}{2 \pi r}=16.0 \mu \mathrm{~T} \tag{5}
\end{equation*}
$$

(d) Eqn. 4 is identical under the relabeling, so we have another attractive force at the same magnitude

$$
\begin{equation*}
F_{B 21} / l=80 \mu \mathrm{~N} \tag{6}
\end{equation*}
$$

as we would expect from Newton's third law (for every action there is an equal and opposite reaction).
Problem 37. Four long, parallel conductors carry equal currents of $I=5.00 \mathrm{~A}$. Figure P22.37 is an end view of the conductors. The current direction is into the page at points A and B and out of the page at points C and D. Calculate the magnitude and direction of the magnetic field at point P, located at the center of the square of edge length $a=0.200 \mathrm{~m}$.

First, let us pick a coordinate system by choosing unit vectors. Let $\hat{\mathbf{i}}$ be down and to the left, $\hat{\mathbf{j}}$ be down and to the right, and $\hat{\mathbf{k}}$ be straight down.
Using the right-hand rule, we determine the direction of the magnetic field at P generated by each wire to be

$$
\begin{align*}
& \widehat{B_{A}}=\hat{\mathbf{i}} \tag{7}\\
& \widehat{B_{B}}=\hat{\mathbf{j}} \tag{8}\\
& \widehat{B_{C}}=\hat{\mathbf{i}} \tag{9}\\
& \widehat{B_{D}}=\hat{\mathbf{j}} \tag{10}
\end{align*}
$$

The magnitude of each B is given by

$$
\begin{equation*}
B=\frac{\mu_{0} I}{2 \pi r} \tag{11}
\end{equation*}
$$

And since the currents have the same magnitude, and each corner is equidistant from the square center, each magnetic field contribution will have the same magnitude. The distance r is given by

$$
\begin{equation*}
r=\sqrt{\left(\frac{a}{2}\right)^{2}+\left(\frac{a}{2}\right)^{2}}=\frac{a}{\sqrt{2}} \tag{12}
\end{equation*}
$$

We still have to add our vector fields, which gives

$$
\begin{equation*}
\mathbf{B}_{P}=\mathbf{B}_{A}+\mathbf{B}_{B}+\mathbf{B}_{C}+\mathbf{B}_{D}=2 B(\hat{\mathbf{i}}+\hat{\mathbf{j}})=2 \frac{\mu_{0} I}{2 \pi r} \cdot \sqrt{2} \hat{\mathbf{k}}=\frac{\sqrt{2} \mu_{0} I}{\pi r} \hat{\mathbf{k}}=\frac{2 \mu_{0} I}{\pi a} \hat{\mathbf{k}}=20 \mu \mathrm{~T} \tag{13}
\end{equation*}
$$

Problem 43. Niobium metal becomes superconducting when cooled below 9K. Its superconductivity is destroyed when the surface B field exceeds $B_{\max }=0.100 \mathrm{~T}$. Determine the maximum current in a $d=2.00 \mathrm{~mm}$ diameter niobium wire can carry and remain superconducting, in the absence of any external B field.

For long, cylindrical wires, the magnetic field a distance r from the center of the wire is

$$
\begin{equation*}
B=\frac{\mu_{0} I}{2 \pi r} \tag{14}
\end{equation*}
$$

As long as you are outside the wire.
Therefore, the magnetic field at the surface is maximized when

$$
\begin{align*}
B_{\max } & =\frac{\mu_{0} I_{\max }}{2 \pi r} \tag{15}\\
I_{\max } & =\left(2 \pi r B_{\max }\right) / \mu_{0}=500 \mathrm{~A} \tag{16}
\end{align*}
$$

Problem 48. In Bohr's 1913 model of the hydrogen atom, the electron is in a circular orbit of radius $r=5.29 \cdot 10^{-11} \mathrm{~m}$, and its speed is $v=2.19 \cdot 10^{6} \mathrm{~m} / \mathrm{s}$. (a) What is the magnitude of the magnetic moment μ due to the electron's motion? (b) If the electron moves in a horizontal circle, counterclockwise as seen from above, what is the direction of μ ?
(a) The magnetic moment is defined on page 742 as

$$
\begin{equation*}
\mu=I \mathbf{A} \tag{17}
\end{equation*}
$$

The area swept out by our electron is just

$$
\begin{equation*}
A=\pi r^{2} \tag{18}
\end{equation*}
$$

The current is the amount of charge circling the nucleus in a unit time. Because

$$
\begin{equation*}
\Delta x=v \Delta t \tag{19}
\end{equation*}
$$

The time τ taken for an entire circuit is

$$
\begin{equation*}
\tau=\frac{\Delta x}{v}=\frac{2 \pi r}{v} \tag{20}
\end{equation*}
$$

The current is then given by

$$
\begin{equation*}
I=\frac{\Delta q}{\Delta t}=\frac{q_{e} v}{2 \pi r} \tag{21}
\end{equation*}
$$

Plugging I and A into our moment equation

$$
\begin{equation*}
\mu=\frac{q_{e} v}{2 \pi r} \cdot \pi r^{2}=\left(q_{e} v r\right) / 2=9.27 \cdot 10^{-24} \mathrm{~A} \mathrm{~m}^{2} \tag{22}
\end{equation*}
$$

The direction of the current is opposite the direction of the electron (because the electron has negative charge), so the direction of μ is down.
Problem 57. A positive charge $q=3.20 \cdot 10^{-19} \mathrm{C}$ moves with a velocity $\mathbf{v}=(2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}-\hat{\mathbf{k}}) \mathrm{m} / \mathrm{s}$ through a region where both a uniform magnetic field and a uniform electric field exist. (a) Calculate the total force F on the moving charge (in unit-vector notation), taking $\mathbf{B}=(2 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+\hat{\mathbf{k}}) \mathrm{T}$ and $\mathbf{E}=(4 \hat{\mathbf{i}}-\hat{\mathbf{j}}-2 \hat{\mathbf{k}}) \mathrm{V} / \mathrm{m}$. (b) What angle θ does the force vector \mathbf{F} make with $\hat{\mathbf{i}}$?
(a) From Chapter 19,

$$
\begin{equation*}
\mathbf{F}_{E}=q \mathbf{E}=q(4 \hat{\mathbf{i}}-\hat{\mathbf{j}}-2 \hat{\mathbf{k}}) \mathrm{N} / \mathrm{C} \tag{23}
\end{equation*}
$$

From this chapter

$$
\mathbf{F}_{B}=q \mathbf{v} \times \mathbf{B}=q\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \tag{24}\\
2 & 3 & -1 \\
2 & 4 & 1
\end{array}\right|=q[(3+4) \hat{\mathbf{i}}-(2+2) \hat{\mathbf{j}}+(8-6) \hat{\mathbf{k}}]=q(7 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}) \mathrm{N} / \mathrm{C}
$$

So the total force is given by

$$
\begin{equation*}
\mathbf{F}=\mathbf{F}_{E}+\mathbf{F}_{B}=q[(4+7) \hat{\mathbf{i}}+(-1-4) \hat{\mathbf{j}}+(-2+2) \hat{\mathbf{k}}] \mathrm{N} / \mathrm{C}=q(11 \hat{\mathbf{i}}-5 \hat{\mathbf{j}}) \mathrm{N} / \mathrm{C}=(35.2 \hat{\mathbf{i}}-16.0 \hat{\mathbf{j}}) \cdot 10^{-19} \mathrm{~N} \tag{25}
\end{equation*}
$$

(b)

$$
\begin{equation*}
\theta=\arctan \left(\frac{-5}{11}\right)=-24.4^{\circ} \tag{26}
\end{equation*}
$$

Problem 58. Protons having a kinetic energy of $K=5.00 \mathrm{MeV}$ are moving in the $\hat{\mathbf{i}}$ direction and enter a magnetic field $B=0.050 \hat{\mathbf{k}} \mathrm{~T}$ directed out of the plane of the page and extending from $x=0$ to $x=1.00 \mathrm{~m}$ as shown in Figure P22.58. (a) Calculate the y component of the protons' momentum as they leave the magnetic field. (b) Find the angle α between the initial velocity vector of the proton beam, and the velocity vector after the beam emerges from the field. Ignore relativistic effects and note that $1 \mathrm{eV}=1.60 \cdot 10^{-19} \mathrm{~J}$.

(b) As in our cyclotron problem (Recitation 7, Problem 12), we know

$$
\begin{align*}
F_{c} & =m \frac{v^{2}}{r}=q v B \tag{27}\\
m v & =q r B \tag{28}
\end{align*}
$$

And

$$
\begin{align*}
K & =\frac{1}{2} m v^{2} \tag{29}\\
v & =\sqrt{\frac{2 K}{m}}=30.9 \mathrm{Mm} / \mathrm{s} \tag{30}
\end{align*}
$$

So the radius of the circular arc our protons make in the constant magnetic field region is

$$
\begin{equation*}
r=\frac{m v}{q B}=\frac{m}{q B} \sqrt{\frac{2 K}{m}}=\frac{1}{q B} \sqrt{2 K m}=6.47 \mathrm{~m} \tag{31}
\end{equation*}
$$

Drawing out the center of the circle the beam would make and doing a bit of geometry, we see that

$$
\begin{equation*}
\alpha=\arcsin \left(\frac{\Delta x}{r}\right)=8.90^{\circ} \tag{32}
\end{equation*}
$$

(a) Because the speed of the particles doesn't change because of a magnetic field's perpendicular force, we can find the protons' speed in the y direction on exiting by

$$
\begin{equation*}
v_{y}=v \sin (\alpha) \tag{33}
\end{equation*}
$$

So the y momentum is

$$
\begin{equation*}
p_{y}=m v_{y}=m v \sin (\alpha)=m v \frac{\Delta x}{r}=\frac{m v \Delta x}{(m v) /(q B)}=q B \Delta x=8.00 \cdot 10^{-21} \mathrm{~kg} \mathrm{~m} / \mathrm{s} \tag{34}
\end{equation*}
$$

