Recitation 8

Chapter 22
Problem 34. Two long, parallel conductors, separated by $r=10.0 \mathrm{~cm}$, carry current in the same direction. The first wire carries current $I_{1}=5.00 \mathrm{~A}$, and the second carries $I_{2}=8.00 \mathrm{~A}$. (a) What is the magnitude of the magnetic field B_{1} created by I_{1} at the location of I_{2} ? (b) What is the force per unit length exerted by I_{1} on I_{2} ? (c) What is the magnitude of the magnetic field B_{2} created by I_{2} at the location of I_{1} ? (d) What is the force per unit length exerted by I_{2} on I_{1} ?

Problem 37. Four long, parallel conductors carry equal currents of $I=5.00 \mathrm{~A}$. Figure P22.37 is an end view of the conductors. The current direction is into the page at points A and B and out of the page at points C and D. Calculate the magnitude and direction of the magnetic field at point P, located at the center of the square of edge length $a=0.200 \mathrm{~m}$.

Problem 43. Niobium metal becomes superconducting when cooled below 9K. Its superconductivity is destroyed when the surface B field exceeds $B_{\max }=0.100 \mathrm{~T}$. Determine the maximum current in a $d=2.00 \mathrm{~mm}$ diameter niobium wire can carry and remain superconducting, in the absence of any external B field.

Problem 48. In Bohr's 1913 model of the hydrogen atom, the electron is in a circular orbit of radius $r=5.29 \cdot 10^{-11} \mathrm{~m}$, and its speed is $v=2.19 \cdot 10^{6} \mathrm{~m} / \mathrm{s}$. (a) What is the magnitude of the magnetic moment μ due to the electron's motion? (b) If the electron moves in a horizontal circle, counterclockwise as seen from above, what is the direction of μ ?

Problem 57. A positive charge $q=3.20 \cdot 10^{-19} \mathrm{C}$ moves with a velocity $\mathbf{v}=(2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}-\hat{\mathbf{k}}) \mathrm{m} / \mathrm{s}$ through a region where both a uniform magnetic field and a uniform electric field exist. (a) Calculate the total force F on the moving charge (in unit-vector notation), taking $\mathbf{B}=(2 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+\hat{\mathbf{k}}) \mathrm{T}$ and $\mathbf{E}=(4 \hat{\mathbf{i}}-\hat{\mathbf{j}}-2 \hat{\mathbf{k}}) \mathrm{V} / \mathrm{m}$. (b) What angle θ does the force vector \mathbf{F} make with $\hat{\mathbf{i}}$?

Problem 58. Protons having a kinetic energy of $K=5.00 \mathrm{MeV}$ are moving in the $\hat{\mathbf{i}}$ direction and enter a magnetic field $B=0.050 \hat{\mathbf{k}} \mathrm{~T}$ directed out of the plane of the page and extending from $x=0$ to $x=1.00 \mathrm{~m}$ as shown in Figure P22.58. (a) Calculate the y component of the protons' momentum as they leave the magnetic field. (b) Find the angle α between the initial velocity vector of the proton beam, and the velocity vector after the beam emerges from the field. Ignore relativistic effects and note that $1 \mathrm{eV}=1.60 \cdot 10^{-19} \mathrm{~J}$.

