Recitation 7

Chapter 22
Problem 1. Determine the initial direction of the deflection of charged particles as they enter magnetic fields as shown in Figure P22.1.

Problem 3. A proton travels with a speed of $v=3.00 \cdot 10^{6} \mathrm{~m} / \mathrm{s}$ at an angle of $\theta=37.0^{\circ}$ with the direction of a magnetic field of $B=0.300 \mathrm{~T}$ in the $+y$ direction. What are (a) the magnitude of the magnetic force on the proton and (b) its acceleration?

Problem 4. An electron is accelerated through $V=2400 \mathrm{~V}$ from rest and then enters a uniform $B=1.70$ T magnetic field. What are (a) the maximum and (b) the minimum values of the magnetic force this charge can experience?

Problem 10. A velocity selector consists of electric and magnetic fields described by the expressions $\mathbf{E}=E \hat{\mathbf{k}}$ and $\mathbf{B}=B \hat{\mathbf{j}}$, with $B=15.0 \mathrm{mT}$. Find the value of E such that a $K=750 \mathrm{eV}$ electron moving in the $\hat{\mathbf{i}}$ direction is undeflected.

Problem 12. A cyclotron designed to accelerate protons has an outer radius of $R=0.350 \mathrm{~m}$. The protons are emitted nearly at rest from a source at the center and are accelerated through $V=600 \mathrm{~V}$ each time they cross the gap between the dees. The dees are between the poles of an electromagnet where the field is $B=0.800 \mathrm{~T}$. (a) Find the cyclotron frequency f. (b) Find the speed v_{e} at which the protons exit the cyclotron and (c) their kinetic energy K. (d) How many revolutions N does a proton make in the cyclotron? (e) For what time Δt interval does one proton accelerate?

Problem 15. A wire carries a steady current of $A=2.40$ A. A straight section of the wire is $l=0.750 \mathrm{~m}$ long and lies in the $\hat{\mathbf{i}}$ direction within a uniform magbnetic field, $\mathbf{B}=1.60 \hat{\mathbf{k}} \mathrm{~T}$. What is the magnetic force on the section of wire?

Problem 21. A rectangular coil consists of $N=100$ closely wrapped turns and has dimensions $a=0.400 \mathrm{~m}$ and $b=0.300 \mathrm{~m}$. The coil is hinged along the y axis, and its plane makes an angle $\theta=30.0^{\circ}$ with the x axis (Fig. P22.21). What is the magnitude of the torque exerted on the coil by a uniform magnetic field $B=0.800 \mathrm{~T}$ directed along the x axis whwn the current is $I=1.20$ A in the direction shown? What is the expected direction of motion of the coil?

