Recitation 4

Chapter 20
Problem 40. Two capacitors, $C_{1}=5.00 \mu \mathrm{~F}$ and $C_{2}=12.0 \mu \mathrm{~F}$, are connected in series, and the resulting combination is connected to a $\Delta V=9.00 \mathrm{~V}$ battery. Find (a) the equivalent capacitance of the combination, (b) the potential difference across each capacitor, and (c) the charge on each capacitor.
(a) The wire connecting the inner plates of C_{1} and C_{2} contains no net charge, so we know that any charge on the inner plate of C_{1} must have come from the inner plate of C_{2}. Because these charges are equal and opposite, the total charge Q on each capacitor seperately is the same for both $\left(Q_{1}=Q_{2}\right)$. So using the definition of capacitance for both cases we have

$$
\begin{align*}
\Delta V_{1} & =Q / C_{1} \tag{1}\\
\Delta V_{2} & =Q / C_{2} \tag{2}\\
\Delta V & =\Delta V_{1}+\Delta V_{2}=Q\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right)=\frac{Q}{C_{e q}} \tag{3}
\end{align*}
$$

So

$$
\begin{equation*}
C_{e q}=\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right)^{-1}=\left(\frac{1}{5.00 \cdot 10^{-6} \mathrm{~F}}+\frac{1}{12.0 \cdot 10^{-6} \mathrm{~F}}\right)^{-1}=3.53 \mu \mathrm{~F} \tag{4}
\end{equation*}
$$

(c) Plugging back into equation 3 we have

$$
\begin{equation*}
Q=\Delta V \cdot C_{e q}=3.53 \mu \mathrm{~F} \cdot 9.00 \mathrm{~V}=31.8 \mu \mathrm{C} \tag{5}
\end{equation*}
$$

(b) And plugging into equations 1 and 2 we have

$$
\begin{align*}
\Delta V_{1} & =\frac{31.8 \cdot 10^{-6} \mathrm{C}}{5.00 \cdot 10^{-6} \mathrm{~F}}=6.35 \mathrm{~V} \tag{6}\\
\Delta V_{2} & =\frac{31.8 \cdot 10^{-6} \mathrm{C}}{12.0 \cdot 10^{-6} \mathrm{~F}}=2.65 \mathrm{~V} \tag{7}
\end{align*}
$$

Problem 43. Consider the circuit shown in Figure P20.43, where $C_{1}=6.00 \mu \mathrm{~F}, C_{2}=3.00 \mu \mathrm{~F}$, and $\Delta V=20.0 \mathrm{~V}$. Capacitor C_{1} is first charged with Q_{1} by the closing of switch S_{1}. Switch S_{1} is then opened, and the charged capacitor is connected to the uncharged capacitor by the closing of S_{2}. Calculate Q_{1} and the final charge on each capacitor (Q_{1}^{\prime} and Q_{2}^{\prime}).

The first situation with S_{1} closed and S_{2} open is just a standard capacitor charging problem. Using the definition of capacitance

$$
\begin{equation*}
Q_{1}=C_{1} \Delta V=6.00 \cdot 10^{-6} \mathrm{~F} \cdot 20.0 \mathrm{~V}=120 \mu \mathrm{C} \tag{9}
\end{equation*}
$$

After disconnecting the battery and connecting the two capacitors, we have a net charge of Q_{1} in the upper wire that we can distribute as we desire between C_{1} and C_{2}. Because charge is conserved, we know

$$
\begin{equation*}
Q_{1}=Q_{1}^{\prime}+Q_{2}^{\prime} \tag{10}
\end{equation*}
$$

We also know that at equilibrium the voltage across each capacitor must be equal (because if there was a voltage difference beween the upper plates of the two capacitors, it would push current through the upper wire until the voltage difference dissapeared, etc.). So

$$
\begin{equation*}
\Delta V_{1}^{\prime}=\frac{Q_{1}^{\prime}}{C_{1}}=\Delta V_{2}^{\prime}=\frac{Q_{2}^{\prime}}{C_{2}} \tag{11}
\end{equation*}
$$

Now we have two equations relating our two unknowns Q_{1}^{\prime} and Q_{2}^{\prime}. Solving equation 11 for Q_{2}^{\prime} and plugging into equation 10 we get

$$
\begin{align*}
Q_{2}^{\prime} & =\frac{C_{2}}{C_{1}} Q_{1}^{\prime} \tag{12}\\
Q_{1} & =\left(1+\frac{C_{2}}{C_{1}}\right) Q_{1}^{\prime} \tag{13}\\
Q_{1}^{\prime} & =\frac{Q_{2}}{1+C_{2} / C_{1}}=\frac{120 \mu \mathrm{C}}{1.5}=80 \mu \mathrm{C} \tag{14}\\
Q_{2}^{\prime} & =0.5 \cdot 80 \mu \mathrm{C}=40 \mu \mathrm{C} \tag{15}
\end{align*}
$$

Problem 47. (a) A $C=3.00 \mu \mathrm{~F}$ capacitor is connected to a $\Delta V_{a}=12.0 \mathrm{~V}$ battery. How much energy U_{a} is stored in the capacitor? (b) If the capacitor had been connected to a $\Delta V_{b}=6.00 \mathrm{~V}$ battery, how much energy would have been stored?

Simply plugging into the formula for energy stored in a capacitor we have

$$
\begin{align*}
U_{a} & =\frac{1}{2} C(\Delta V)^{2}=\frac{1}{2}\left(3.00 \cdot 10^{-6} \mathrm{~F}\right) \cdot(12.0 \mathrm{~V})^{2}=216 \mu \mathrm{~J} \tag{16}\\
U_{b} & =\frac{1}{2}\left(3.00 \cdot 10^{-6} \mathrm{~F}\right) \cdot(6.0 \mathrm{~V})^{2}=54 \mu \mathrm{~J} \tag{17}
\end{align*}
$$

Problem 51. Show that the force between two plates of a parallel-plate capacitor each have an attractive force given by

$$
\begin{equation*}
F=\frac{Q^{2}}{2 \epsilon_{0} A} \tag{18}
\end{equation*}
$$

The electric field generated by the plate A is given by $E_{A}=Q / 2 \epsilon_{0} A$ (which we derived for P19.62, along with $\sigma=Q / A$). So the force on plate B due to plate A is given by

$$
\begin{equation*}
F=Q E_{A}=\frac{Q^{2}}{2 \epsilon_{0} A} \tag{19}
\end{equation*}
$$

Problem 54. (a) How much charge Q_{c} can be placed on a capacitor with air between the plates before it breaks down if the area of each plate is $A=5.00 \mathrm{~cm}^{2}$? (b) Find the maximum charge assuming polystyrene is used between the plates instead of air.

From Chapter 19, the voltage difference due to a constant electric field \mathbf{E} over a displacement \mathbf{d} is given by $\Delta V=\mathbf{E} \cdot \mathbf{d}$. So for two plates a distance d apart, the breakdown voltage is given by

$$
\begin{equation*}
V_{c}=E_{c} d \tag{20}
\end{equation*}
$$

where E_{c} is the dielectric strength of the material.
The capacitance of a parallel-plate capacitor is given by

$$
\begin{equation*}
C=\frac{\kappa \epsilon_{0} A}{d} \tag{21}
\end{equation*}
$$

Combining these two formula with the definition of capacitance we have

$$
\begin{equation*}
E_{c} d=V=\frac{Q}{C}=\frac{Q d}{\kappa \epsilon_{0} A} Q=\kappa E_{c} \epsilon_{0} A \tag{22}
\end{equation*}
$$

Looking up the values for air and polystyrene in Table 20.1 on page 699 of the text we see:

Name	Dielectric constant κ	Dielectric strength E_{c}
Air	1.00059	$3 \cdot 10^{6} \mathrm{~V} / \mathrm{m}$
Polystyrene	2.56	$24 \cdot 10^{6} \mathrm{~V} / \mathrm{m}$

So plugging into our formula for the charge

$$
\begin{align*}
Q_{a} & =1.00 \cdot\left(3 \cdot 10^{6} \mathrm{~V} / \mathrm{m}\right) \cdot\left(8.85 \cdot 10^{-12} \mathrm{C}^{2} / \mathrm{N} \mathrm{~m}^{2}\right) \cdot 5 \cdot 10^{-4} \mathrm{~m}^{2}=1.33 \cdot 10^{-8} \mathrm{C} \tag{23}\\
Q_{b} & =2.56 \cdot\left(24 \cdot 10^{6} \mathrm{~V} / \mathrm{m}\right) \cdot\left(8.85 \cdot 10^{-12} \mathrm{C}^{2} / \mathrm{N} \mathrm{~m}^{2}\right) \cdot 5 \cdot 10^{-4} \mathrm{~m}^{2}=2.72 \cdot 10^{-7} \mathrm{C} \tag{24}
\end{align*}
$$

Problem 73. A parallel-plate capacitor is constructed using a dielectric material whose dielectric constant is $\kappa=3.00$ and whose dielectric strength is $E_{c}=2.00 \cdot 10^{8} \mathrm{~V} / \mathrm{m}$. The desired capacitance is $C=0.250 \mu \mathrm{~F}$, and the capacitor must withstand a maximum potential difference of $V_{c}=4000 \mathrm{~V}$. Find the minimum area A of the capacitor plates.

Using equation 20, we have

$$
\begin{equation*}
d \geq \frac{V_{c}}{E_{c}} \tag{25}
\end{equation*}
$$

Where equality represents a breakdown at V_{c} and larger d give us more protection with larger breakdown voltages. From equation 21 we have

$$
\begin{equation*}
A=\frac{d C}{\kappa \epsilon_{0}} \tag{26}
\end{equation*}
$$

From which we can see that the smaller d is, the smaller A can be, and we pick $d=V_{c} / E_{c}$, the smallest possible value we can. Then the smallest area is given by

$$
\begin{equation*}
A=\frac{V_{c} C}{E_{c} \kappa \epsilon_{0}}=\frac{(4000 \mathrm{~V}) \cdot\left(0.25 \cdot 10^{-6} \mathrm{~F}\right)}{\left(2.00 \cdot 10^{8} \mathrm{~V} / \mathrm{m}\right) \cdot 3.00 \cdot\left(8.85 \cdot 10^{-12} \mathrm{C}^{2} / \mathrm{Nm}^{2}\right)}=0.188 \mathrm{~m}^{2} \tag{27}
\end{equation*}
$$

