
Recitation 3
Chapter 20

Problem 3. A uniform electric field of magnitude E = 250 V/m is directed in the positive x direction (̂i). A q = +12.0 µC
charge moves from the origin to the point (x, y) = (20.0 cm, 50.0 cm). (a) What is the change in the potential energy ∆U of
the charge-field system? (b) Through what potential difference ∆V does the charge move?

(a) From the text Equation 20.1 (page 643) we see

∆U = −q
∫ B

A

E · ds = −q
∫ B

A

E î · ds = −qE
∫ x2

x1

dx = −qE∆x (1)

Which is the same process the book used to get to their Equation 20.9. Plugging in our numbers

∆U = −12.0 · 10−6 C · 250 V/m · 0.200 m = −6.00 · 10−4 J (2)

(b) The change in electric potential is given by

∆V =
∆U
q

= −50.0 V (3)

Problem 8. Given two q0 = 2.00 µC charges as shown in Figure P20.8 and a positive test charge of q = 1.28 · 10−18 C at
the origin, (a) what is the net force exerted by the two q0 charges on the test charge q? (b) What is the electric field at the
origin due to the two q0 charges? (c) What is the electrical potential at the origin due to the two q0 charges?
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x

î
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(a) Letting a = 0.800 m and summing the forces from Coulomb’s law

F = FA + FB = ke

[q0q
a2

î +
q0q

a2
(−̂i)

]
= 0 (4)

Which makes sense because the situation is symmetric.
(b) Summing the electric fields

E(0) = EA + EB = ke

[ q0
a2

î +
q0
a2

(−̂i)
]

=
F
q

= 0 (5)

(c) Summing the potentials

V (0) = VA + VB = ke
q0
a

+ ke
q0
a

= 2ke
q0
a

= 2 · 8.99 · 109V m/C
2.00 · 10−6 C

0.800 m
= 45.0UkV (6)

Problem 19. A light, unstressed spring has a length d. Two identical particles, each with charge q, are connected to the
opposite ends of the spring. The particles are held stationary a distance d apart and are then released at the same time.
The spring has a bit of internal kinetic friction, so the oscillation is damped. The particles eventually stop vibrating when
the distance between them is 3d. Find the increase in internal energy ∆Ei that appears in the spring during the oscillations.
Assume that the system of the spring and the two charges is isolated.

From last quarter, we remember that spring potential energy is given by Us = 1/2 · kx2. To plug in for k, we balance the
forces at equilibrium

Fe = ke

( q
3d

)2

= Fs = k · 2d (7)

k = ke
q2

9 · 2 · d3
(8)

From this chapter (Equation 20.13), we see that the electrical potential energy of two charges is given by

Ue = ke
q1q2
r12

(9)

So the total potential energy of the system in it’s final state is given by the sum of the electric Ue and spring Us potentials.

U = Ue + Us =
1
2
k(r − d)2 + ke

q2

r
(10)



The total energy at a point in time is the sum of potential and internal energies

Et = Ut + Eit . (11)

Since we were only interested in the change in internal energy, we can set the initial internal energy to 0, and call the final
internal energy Ei.
Conserving energy E0 = E1 (because the system is isolated)

E0 = U0 = E1 = U1 + Ei (12)

Ei = U0 − U1 = ke
q2

d
− 1

2
k(2d)2 − ke

q2

3d
= ke

q2

d

(
1− 1

3

)
− 2kd2 (13)

= ke
2q2

3d
− 2

(
ke

q2

9 · 2 · d3

)
d2 = ke

2q2

3d
− ke

q2

9d
=

5keq2

9d
, (14)

Problem 20. In 1911, Ernest Rutherford and his assistants Hans Geiger and Ernest Mardsen conducted an experiment in
which they scattered alpha particles from thin sheets of gold. An alpha particle, having a charge of qα = +2e and a mass
of m = 6.64 · 10−27 kg is a product of certain radioactive decays. The results of the experiment lead Rutherford to the idea
that most of the mass of an atom is in a very small nucleus, whith electrons in orbit around it, in his planetary model of the
atom. Assume that an alpha particle, initially very far from a gold nucleus, is fired with a velocity v = 2.00 ·107 m/s directly
toward the nucleus (charge Q = +79e). How close does the alpha particle get to the nucleus before turning around? Asume
that the gold nucleus remains stationary.

Let r be the distance between the alpha particle and the gold nucleus. Conserving energy between the initial point at r =∞
where the energy is all kinetic

E0 =
1
2
mv2

0 (15)

And the point of closest approach where the energy is all electric potential

E1 = ke
(2e)(79e)

r
(16)

We have

E0 =
1
2
mv2 = E1 = ke

158e2

r
(17)

r =
2 · 158 · kee2

mv2
=

316 · 8.99 · 109 N m2/C2 · (1.60 · 10−19 C)2

6.64 · 10−27 kg · (2.00 · 107 m/s)2
= 2.74 · 10−14 m (18)

Which is significantly less than the re ∼ 10−10 m radius of the gold atom.

Problem 21. The potential in a region between x = 0 and x = 6.00 m is V = a+ bx, where a = 10.0 V and b = −7.00 V/m.
Determine (a) the potential at x = 0, 3.00 m, and 6.00 m; and (b) the magnitude and direction of the electric field at x = 0,
3.00 m, and 6.00 m.

(a) Simply plugging into their V (x) formula

V (0 m) = 10.0 V (19)
V (3.00 m) = 10.0 V− 21.0 V = −11 V (20)
V (6.00 m) = 10.0 V− 42.0 V = −32 V (21)

(b) Using Ex = −dV/dx we have

E = − d

dx
(a+ bx) = −b = 7.00 V/m (22)

At any point for 0 ≤ x ≤ 6.00 m.

Problem 22. The electric potential insize a charged spherical conductor of radius R is given by Vi = keQ/R, and the outside
potential is given by Vo = keQ/r. Using Er = −dV/dx, determine the electric field (a) inside and (b) outside this charge
distribution.

(a)

Ei = − d

dx

(
keQ

R

)
= 0 (23)

Because Vi is constant with respect to r.
(b)

Eo = − d

dx

(
keQ

r

)
= −keQ

d

dx

(
1
r

)
= −keQ

−1
r2

=
keQ

r2
(24)



Problem 24. Consider a ring of radius R with the total charge Q spread uniformly over its perimeter. What is the potential
difference between the point at the center of the ring and a point on its axis a distance d = 2R from the center?

From the first week’s recitation (P19.19), we have the electric field along the axis due to the ring as

E =
kexQ

(x2 +R2)3/2
î (25)

So the potential drop from 0 to d is given by

∆V = −
∫ d

0

Exdx = −keQ
∫ d

0

x · dx
(x2 +R2)3/2

(26)

Substituting u = x2 +R2 so du = 2xdx we have

∆V = −keQ
∫

1/2 · du
u3/2

= −1
2
keQ
−2√
u

=
keQ√
u

(27)

And plugging back in in terms of x

∆V =
keQ√
x2 +R2

∣∣∣∣d
0

=
keQ√
d2 +R2

− keQ

R
= keQ

(
1√

(4 + 1)R2
− 1
R

)
=
keQ

R

(
1√
5
− 1
)

= −0.533
keQ

R
(28)


